A Python utility library for computing activation outputs in machine learning classification tasks. This package provides a unified interface for handling binary, multiclass, and multilabel classification scenarios.
- Multiple Classification Types: Support for binary, multiclass, and multilabel classification
- Numerically Stable: Implements stable computation methods to prevent overflow/underflow
- Type Safe: Full type hints and validation for robust usage
- NumPy Integration: Built on NumPy for efficient array operations
This project uses uv for dependency management. To install:
# Clone the repository
git clone <repository-url>
cd krish-sandbox
# Install dependencies using uv
uv sync- Python >= 3.13
- NumPy >= 2.3.1
import numpy as np
from krish_sandbox import activation_output
# Binary classification
logits = np.array([2.5, -1.0, 0.8])
probabilities = activation_output(logits, task_type='binary')
print(probabilities) # [0.92414182 0.26894142 0.68997448]
# Multiclass classification
logits = np.array([[1.0, 2.0, 0.5], [0.1, 0.2, 0.3]])
probabilities = activation_output(logits, task_type='multiclass')
print(probabilities)
# [[0.24472847 0.66524096 0.09003057]
# [0.30060961 0.33222499 0.3671654 ]]
# Multilabel classification
logits = np.array([[1.0, -0.5, 2.0], [0.1, 0.8, -0.3]])
probabilities = activation_output(logits, task_type='multilabel')
print(probabilities)
# [[0.73105858 0.37754067 0.88079708]
# [0.52497919 0.68997448 0.42555748]]- Input: Scalar or 1D array of logits
- Output: Probabilities between 0 and 1
- Activation: Sigmoid function
- Input: 2D array of logits (batch_size, num_classes)
- Output: Probability distribution over classes (sums to 1)
- Activation: Softmax function with numerical stability
- Input: 2D array of logits (batch_size, num_labels)
- Output: Independent probabilities for each label
- Activation: Sigmoid function applied to each logit
Computes activation output for classification tasks.
Parameters:
logits(Union[npt.NDArray, Sequence]): Raw model outputstask_type(str): One of ['binary', 'multiclass', 'multilabel']. Defaults to 'binary'
Returns:
npt.NDArray: Probabilities after applying appropriate activation function
Raises:
ValueError: If logits array is empty or contains NaN/infinite valuesValueError: If task_type is not one of the valid options
# Install development dependencies
uv sync --dev
# Activate virtual environment
source .venv/bin/activate # On Unix/macOS
# or
.venv\Scripts\activate # On Windows