Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions config/check_tiny.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ model:
dropout: 0.2
encoder_type: bi
attention_mechanism: bahdanau
session_level_encoder: False

train:
batch_size: 2
Expand Down
42 changes: 41 additions & 1 deletion model.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,8 @@ def _init_placeholder(self, features, labels):
def build_graph(self):
self._build_embed()
self._build_encoder()
if Config.model.session_level_encoder:
self._build_session_level_encoder()
self._build_decoder()

if self.mode != tf.estimator.ModeKeys.PREDICT:
Expand Down Expand Up @@ -106,6 +108,44 @@ def _build_encoder(self):
self.encoder_outputs = tf.contrib.seq2seq.tile_batch(self.encoder_outputs, beam_width)
self.encoder_input_lengths = tf.contrib.seq2seq.tile_batch(self.encoder_input_lengths, beam_width)

def _build_session_level_encoder(self):

if Config.model.num_layers > 1:
if Config.model.cell_type == "LSTM":
if Config.model.encoder_type == "bi":
session_level_encoder_input = tf.stack(self.encoder_final_state)
else:
session_level_encoder_input = tf.stack(self.encoder_final_state[-1])
else:
if Config.model.encoder_type == "bi":
session_level_encoder_input = tf.stack([self.encoder_final_state])
else:
session_level_encoder_input = tf.stack([self.encoder_final_state[-1]])
else:
if Config.model.cell_type == "LSTM":
if Config.model.encoder_type == "bi":
session_level_encoder_input = tf.stack(self.encoder_final_state)
else:
session_level_encoder_input = tf.stack(self.encoder_final_state[0])
else:
if Config.model.encoder_type == "bi":
session_level_encoder_input = tf.stack([self.encoder_final_state])
else:
session_level_encoder_input = tf.stack(self.encoder_final_state)

with tf.variable_scope("session_level_encoder"):

if Config.model.cell_type == "LSTM":
session_level_encoder_cell = self._single_cell("LSTM", Config.model.dropout,Config.model.num_units)
else:
session_level_encoder_cell = self._single_cell("GRU", Config.model.dropout,Config.model.num_units)

session_level_encoder_outputs, session_level_encoder_final_state = tf.nn.dynamic_rnn(
session_level_encoder_cell, session_level_encoder_input,
dtype=tf.float32)

self.encoder_final_state = tf.unstack(session_level_encoder_outputs)[0]

def _build_unidirectional_rnn(self):
cells = self._build_rnn_cells(Config.model.num_units)
return tf.nn.dynamic_rnn(
Expand Down Expand Up @@ -202,7 +242,7 @@ def decode(helper=None, scope="decode"):
attention_mechanism,
attention_layer_size=attention_layer_size,
alignment_history=alignment_history,
name="attention")
name="attention")

out_cell = tf.contrib.rnn.OutputProjectionWrapper(
attn_cell, Config.data.vocab_size)
Expand Down