Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
369 changes: 369 additions & 0 deletions include/nbl/builtin/hlsl/math/quaternions.hlsl
Original file line number Diff line number Diff line change
@@ -0,0 +1,369 @@
// Copyright (C) 2018-2025 - DevSH Graphics Programming Sp. z O.O.
// This file is part of the "Nabla Engine".
// For conditions of distribution and use, see copyright notice in nabla.h
#ifndef _NBL_BUILTIN_HLSL_MATH_QUATERNIONS_INCLUDED_
#define _NBL_BUILTIN_HLSL_MATH_QUATERNIONS_INCLUDED_

#include "nbl/builtin/hlsl/cpp_compat.hlsl"
#include "nbl/builtin/hlsl/tgmath.hlsl"

namespace nbl
{
namespace hlsl
{
namespace math
{

template<typename T>
struct truncated_quaternion
{
using this_t = truncated_quaternion<T>;
using scalar_type = T;
using data_type = vector<T, 3>;

static this_t create()
{
this_t q;
q.data = data_type(0.0, 0.0, 0.0);
return q;
}

data_type data;
};

template <typename T>
struct quaternion
{
using this_t = quaternion<T>;
using scalar_type = T;
using data_type = vector<T, 4>;
using vector3_type = vector<T, 3>;
using matrix_type = matrix<T, 3, 3>;

using AsUint = typename unsigned_integer_of_size<sizeof(scalar_type)>::type;

static this_t create()
{
this_t q;
q.data = data_type(0.0, 0.0, 0.0, 1.0);
return q;
}
Comment on lines +45 to +50

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

i think the create overloads need to have their argument types templated with NBL_FUNC_REQUIRES because DXC will screw us over with implicit conversions


// angle: Rotation angle expressed in radians.
// axis: Rotation axis, must be normalized.
static this_t create(const vector3_type axis, scalar_type angle)
{
this_t q;
const scalar_type sinTheta = hlsl::sin(angle * 0.5);
const scalar_type cosTheta = hlsl::cos(angle * 0.5);
q.data = data_type(axis * sinTheta, cosTheta);
return q;
}

template<typename U=vector<scalar_type,2> NBL_FUNC_REQUIRES(is_same_v<vector<scalar_type,2>,U>)
static this_t create(const U halfPitchCosSin, const U halfYawCosSin, const U halfRollCosSin)
{
const scalar_type cp = halfPitchCosSin.x;
const scalar_type sp = halfPitchCosSin.y;

const scalar_type cy = halfYawCosSin.x;
const scalar_type sy = halfYawCosSin.y;

const scalar_type cr = halfRollCosSin.x;
const scalar_type sr = halfRollCosSin.y;

this_t q;
q.data[0] = cr * sp * cy + sr * cp * sy; // x
q.data[1] = cr * cp * sy - sr * sp * cy; // y
q.data[2] = sr * cp * cy - cr * sp * sy; // z
q.data[3] = cr * cp * cy + sr * sp * sy; // w

return q;
}

template<typename U=scalar_type NBL_FUNC_REQUIRES(is_same_v<scalar_type,U>)
static this_t create(const U pitch, const U yaw, const U roll)
{
const scalar_type halfPitch = pitch * scalar_type(0.5);
const scalar_type halfYaw = yaw * scalar_type(0.5);
const scalar_type halfRoll = roll * scalar_type(0.5);

return create(
vector<scalar_type,2>(hlsl::cos(halfPitch), hlsl::sin(halfPitch)),
vector<scalar_type,2>(hlsl::cos(halfYaw), hlsl::sin(halfYaw)),
vector<scalar_type,2>(hlsl::cos(halfRoll), hlsl::sin(halfRoll))
);
}

static bool __isEqual(const scalar_type a, const scalar_type b)
{
return hlsl::max(a/b, b/a) <= scalar_type(1e-4);
}
static bool __dotIsZero(const vector3_type a, const vector3_type b)
{
const scalar_type ab = hlsl::dot(a, b);
return hlsl::abs(ab) <= scalar_type(1e-4);
}

static this_t create(NBL_CONST_REF_ARG(matrix_type) m, const bool dontAssertValidMatrix=false)
{
{
// only orthogonal and uniform scale mats can be converted
bool valid = __dotIsZero(m[0], m[1]);
valid = __dotIsZero(m[1], m[2]) && valid;
valid = __dotIsZero(m[0], m[2]) && valid;

const matrix_type m_T = hlsl::transpose(m);
const scalar_type dotCol0 = hlsl::dot(m_T[0],m_T[0]);
const scalar_type dotCol1 = hlsl::dot(m_T[1],m_T[1]);
const scalar_type dotCol2 = hlsl::dot(m_T[2],m_T[2]);
valid = __isEqual(dotCol0, dotCol1) && valid;
valid = __isEqual(dotCol1, dotCol2) && valid;
valid = __isEqual(dotCol0, dotCol2) && valid;

if (dontAssertValidMatrix)
if (!valid)
{
this_t retval;
retval.data = hlsl::promote<data_type>(bit_cast<scalar_type>(numeric_limits<scalar_type>::quiet_NaN));
return retval;
}
else
assert(valid);
}

const scalar_type m00 = m[0][0], m11 = m[1][1], m22 = m[2][2];
const scalar_type neg_m00 = bit_cast<scalar_type>(bit_cast<AsUint>(m00)^0x80000000u);
const scalar_type neg_m11 = bit_cast<scalar_type>(bit_cast<AsUint>(m11)^0x80000000u);
const scalar_type neg_m22 = bit_cast<scalar_type>(bit_cast<AsUint>(m22)^0x80000000u);
const data_type Qx = data_type(m00, m00, neg_m00, neg_m00);
const data_type Qy = data_type(m11, neg_m11, m11, neg_m11);
const data_type Qz = data_type(m22, neg_m22, neg_m22, m22);

const data_type tmp = hlsl::promote<data_type>(1.0) + Qx + Qy + Qz;

// TODO: speed this up
this_t retval;
if (tmp.x > scalar_type(0.0))
{
const scalar_type invscales = scalar_type(0.5) / hlsl::sqrt(tmp.x);
retval.data.x = (m[2][1] - m[1][2]) * invscales;
retval.data.y = (m[0][2] - m[2][0]) * invscales;
retval.data.z = (m[1][0] - m[0][1]) * invscales;
retval.data.w = tmp.x * invscales * scalar_type(0.5);
}
else
{
if (tmp.y > scalar_type(0.0))
{
const scalar_type invscales = scalar_type(0.5) / hlsl::sqrt(tmp.y);
retval.data.x = tmp.y * invscales * scalar_type(0.5);
retval.data.y = (m[0][1] + m[1][0]) * invscales;
retval.data.z = (m[2][0] + m[0][2]) * invscales;
retval.data.w = (m[2][1] - m[1][2]) * invscales;
}
else if (tmp.z > scalar_type(0.0))
{
const scalar_type invscales = scalar_type(0.5) / hlsl::sqrt(tmp.z);
retval.data.x = (m[0][1] + m[1][0]) * invscales;
retval.data.y = tmp.z * invscales * scalar_type(0.5);
retval.data.z = (m[0][2] - m[2][0]) * invscales;
retval.data.w = (m[1][2] + m[2][1]) * invscales;
}
else
{
const scalar_type invscales = scalar_type(0.5) / hlsl::sqrt(tmp.w);
retval.data.x = (m[0][2] + m[2][0]) * invscales;
retval.data.y = (m[1][2] + m[2][1]) * invscales;
retval.data.z = tmp.w * invscales * scalar_type(0.5);
retval.data.w = (m[1][0] - m[0][1]) * invscales;
}
}

retval.data = hlsl::normalize(retval.data);
return retval;
}

this_t operator*(scalar_type scalar)
{
this_t output;
output.data = data * scalar;
return output;
}

this_t operator*(NBL_CONST_REF_ARG(this_t) other)
{
this_t retval;
retval.data = data_type(
data.w * other.data.w - data.x * other.x - data.y * other.data.y - data.z * other.data.z,
data.w * other.data.x + data.x * other.w + data.y * other.data.z - data.z * other.data.y,
data.w * other.data.y - data.x * other.z + data.y * other.data.w + data.z * other.data.x,
data.w * other.data.z + data.x * other.y - data.y * other.data.x + data.z * other.data.w
);
return retval;
}

static this_t unnormLerp(const this_t start, const this_t end, const scalar_type fraction, const scalar_type totalPseudoAngle)
{
// TODO: benchmark uint sign flip vs just *sign(totalPseudoAngle)
const data_type adjEnd = ieee754::flipSignIfRHSNegative<data_type>(end.data, totalPseudoAngle);

this_t retval;
retval.data = hlsl::mix(start.data, adjEnd, fraction);
return retval;
}

static this_t unnormLerp(const this_t start, const this_t end, const scalar_type fraction)
{
return unnormLerp(start, end, fraction, hlsl::dot(start.data, end.data));
}

static this_t lerp(const this_t start, const this_t end, const scalar_type fraction)
{
this_t retval = unnormLerp(start, end, fraction);
retval.data = hlsl::normalize(retval.data);
return retval;
}

static scalar_type __adj_interpolant(const scalar_type angle, const scalar_type fraction, const scalar_type interpolantPrecalcTerm2, const scalar_type interpolantPrecalcTerm3)
{
const scalar_type A = scalar_type(1.0904) + angle * (scalar_type(-3.2452) + angle * (scalar_type(3.55645) - angle * scalar_type(1.43519)));
const scalar_type B = scalar_type(0.848013) + angle * (scalar_type(-1.06021) + angle * scalar_type(0.215638));
const scalar_type k = A * interpolantPrecalcTerm2 + B;
return fraction + interpolantPrecalcTerm3 * k;
}

static this_t unnormFlerp(const this_t start, const this_t end, const scalar_type fraction)
{
const scalar_type pseudoAngle = hlsl::dot(start.data,end.data);
const scalar_type interpolantPrecalcTerm = fraction - scalar_type(0.5);
const scalar_type interpolantPrecalcTerm3 = fraction * interpolantPrecalcTerm * (fraction - scalar_type(1.0));
const scalar_type adjFrac = __adj_interpolant(hlsl::abs(pseudoAngle),fraction,interpolantPrecalcTerm*interpolantPrecalcTerm,interpolantPrecalcTerm3);

this_t retval = unnormLerp(start,end,adjFrac,pseudoAngle);
return retval;
}

static this_t flerp(const this_t start, const this_t end, const scalar_type fraction)
{
this_t retval = unnormFlerp(start,end,fraction);
retval.data = hlsl::normalize(retval.data);
return retval;
}

vector3_type transformVector(const vector3_type v, const bool assumeNoScale=false) NBL_CONST_MEMBER_FUNC
{
scalar_type scale = hlsl::mix(hlsl::length(data), scalar_type(1.0), assumeNoScale);
vector3_type direction = data.xyz;
return v * scale + hlsl::cross(direction, v * data.w + hlsl::cross(direction, v)) * scalar_type(2.0);
}

matrix_type constructMatrix() NBL_CONST_MEMBER_FUNC
{
matrix_type mat;
mat[0] = data.yzx * data.ywz + data.zxy * data.zyw * vector3_type( 1.0, 1.0,-1.0);
mat[1] = data.yzx * data.xzw + data.zxy * data.wxz * vector3_type(-1.0, 1.0, 1.0);
mat[2] = data.yzx * data.wyx + data.zxy * data.xwy * vector3_type( 1.0,-1.0, 1.0);
mat[0][0] = scalar_type(0.5) - mat[0][0];
mat[1][1] = scalar_type(0.5) - mat[1][1];
mat[2][2] = scalar_type(0.5) - mat[2][2];
mat[0] = mat[0] * scalar_type(2.0);
mat[1] = mat[1] * scalar_type(2.0);
mat[2] = mat[2] * scalar_type(2.0);
return mat;// hlsl::transpose(mat); // TODO: double check transpose?
}

static vector3_type slerp_delta(const vector3_type start, const vector3_type preScaledWaypoint, scalar_type cosAngleFromStart)
{
vector3_type planeNormal = hlsl::cross(start,preScaledWaypoint);

cosAngleFromStart *= scalar_type(0.5);
const scalar_type sinAngle = hlsl::sqrt(scalar_type(0.5) - cosAngleFromStart);
const scalar_type cosAngle = hlsl::sqrt(scalar_type(0.5) + cosAngleFromStart);

planeNormal *= sinAngle;
const vector3_type precompPart = hlsl::cross(planeNormal, start) * scalar_type(2.0);

return precompPart * cosAngle + hlsl::cross(planeNormal, precompPart);
}

this_t inverse() NBL_CONST_MEMBER_FUNC
{
this_t retval;
retval.data.xyz = -retval.data.xyz;
retval.data.w = data.w;
return retval;
}

data_type data;
};

}


namespace cpp_compat_intrinsics_impl
{
template<typename T>
struct normalize_helper<math::truncated_quaternion<T> >
{
static inline math::truncated_quaternion<T> __call(const math::truncated_quaternion<T> q)
{
math::truncated_quaternion<T> retval;
retval.data = hlsl::normalize(q.data);
return retval;
}
};

template<typename T>
struct normalize_helper<math::quaternion<T> >
{
static inline math::quaternion<T> __call(const math::quaternion<T> q)
{
math::quaternion<T> retval;
retval.data = hlsl::normalize(q.data);
return retval;
}
};
}

namespace impl
{
template<typename T>
struct static_cast_helper<math::quaternion<T>, math::truncated_quaternion<T> >
{
static inline math::quaternion<T> cast(const math::truncated_quaternion<T> q)
{
math::quaternion<T> retval;
retval.data.xyz = q.data;
retval.data.w = hlsl::sqrt(scalar_type(1.0) - hlsl::dot(q.data, q.data));
return retval;
}
};

template<typename T>
struct static_cast_helper<math::truncated_quaternion<T>, math::quaternion<T> >
{
static inline math::truncated_quaternion<T> cast(const math::quaternion<T> q)
{
math::truncated_quaternion<T> t;
t.data.x = t.data.x;
t.data.y = t.data.y;
t.data.z = t.data.z;
return t;
}
};

template<typename T>
struct static_cast_helper<matrix<T,3,3>, math::quaternion<T> >
{
static inline matrix<T,3,3> cast(const math::quaternion<T> q)
{
return q.constructMatrix();
}
};
}

}
}

#endif
1 change: 1 addition & 0 deletions src/nbl/builtin/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,7 @@ LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/geometry.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/intutil.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/polar.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/angle_adding.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/quaternions.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/equations/quadratic.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/equations/cubic.hlsl")
LIST_BUILTIN_RESOURCE(NBL_RESOURCES_TO_EMBED "hlsl/math/equations/quartic.hlsl")
Expand Down
Loading