Skip to content

Commit

Permalink
Merge pull request #1528 from AlbinSou/cil_exfree
Browse files Browse the repository at this point in the history
CIL Examplar Free components
  • Loading branch information
AntonioCarta authored Nov 17, 2023
2 parents b22411e + ccdd1ff commit 69259e3
Show file tree
Hide file tree
Showing 8 changed files with 994 additions and 15 deletions.
2 changes: 2 additions & 0 deletions avalanche/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,3 +27,5 @@
from .prompt import Prompt
from .vit import create_model
from .scr_model import *
from .fecam import FeCAMClassifier
from .cosine_layer import CosineIncrementalClassifier, CosineLinear
180 changes: 180 additions & 0 deletions avalanche/models/cosine_layer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
#!/usr/bin/env python3
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from avalanche.models import DynamicModule


"""
Implementation of Cosine layer taken and modified from https://github.com/G-U-N/PyCIL
"""


class CosineLinear(nn.Module):
"""
Cosine layer defined in
"Learning a Unified Classifier Incrementally via Rebalancing"
by Saihui Hou et al.
Implementation modified from https://github.com/G-U-N/PyCIL
This layer is aimed at countering the task-recency bias by removing the bias
in the classifier and normalizing the weight and the input feature before
computing the weight-feature product
"""

def __init__(self, in_features, out_features, sigma=True):
"""
:param in_features: number of input features
:param out_features: number of classes
:param sigma: learnable output scaling factor
"""
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.Tensor(self.out_features, in_features))
if sigma:
self.sigma = nn.Parameter(torch.Tensor(1))
else:
self.register_parameter("sigma", None)
self.reset_parameters()

def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.sigma is not None:
self.sigma.data.fill_(1)

def forward(self, input):
out = F.linear(
F.normalize(input, p=2, dim=1), F.normalize(self.weight, p=2, dim=1)
)
if self.sigma is not None:
out = self.sigma * out

return out


class SplitCosineLinear(nn.Module):
"""
This class keeps two Cosine Linear layers, without sigma scaling,
and handles the sigma parameter that is common for the two of them.
One CosineLinear is for the old classes and the other
one is for the new classes
"""

def __init__(self, in_features, out_features1, out_features2, sigma=True):
super(SplitCosineLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features1 + out_features2
self.fc1 = CosineLinear(in_features, out_features1, False)
self.fc2 = CosineLinear(in_features, out_features2, False)
if sigma:
self.sigma = nn.Parameter(torch.Tensor(1))
self.sigma.data.fill_(1)
else:
self.register_parameter("sigma", None)

def forward(self, x):
out1 = self.fc1(x)
out2 = self.fc2(x)

out = torch.cat((out1, out2), dim=1)

if self.sigma is not None:
out = self.sigma * out

return out


class CosineIncrementalClassifier(DynamicModule):
"""
Equivalent to IncrementalClassifier but using the cosine layer
described in "Learning a Unified Classifier Incrementally via Rebalancing"
by Saihui Hou et al.
"""

def __init__(self, in_features, num_classes=0):
"""
:param in_features: Number of input features
:param num_classes: Number of initial classes (default=0)
If set to more than 0, the initial logits
will be mapped to the corresponding sequence of
classes starting from 0.
"""
super().__init__()
self.class_order = []
self.classes = set()

if num_classes == 0:
self.fc = None
else:
self.fc = CosineLinear(in_features, num_classes, sigma=True)
for i in range(num_classes):
self.class_order.append(i)
self.classes = set(range(5))

self.feature_dim = in_features

def adaptation(self, experience):
num_classes = len(experience.classes_in_this_experience)

new_classes = set(experience.classes_in_this_experience) - set(self.classes)

if len(new_classes) == 0:
# Do not adapt
return

self.classes = self.classes.union(new_classes)

for c in list(new_classes):
self.class_order.append(c)

max_index = len(self.class_order)

if self.fc is None:
self.fc = CosineLinear(self.feature_dim, max_index, sigma=True)
return

fc = self._generate_fc(self.feature_dim, max_index)

if isinstance(self.fc, CosineLinear):
# First exp self.fc is CosineLinear
# while it is SplitCosineLinear for subsequent exps
fc.fc1.weight.data = self.fc.weight.data
fc.sigma.data = self.fc.sigma.data
elif isinstance(self.fc, SplitCosineLinear):
prev_out_features1 = self.fc.fc1.out_features
fc.fc1.weight.data[:prev_out_features1] = self.fc.fc1.weight.data
fc.fc1.weight.data[prev_out_features1:] = self.fc.fc2.weight.data
fc.sigma.data = self.fc.sigma.data

del self.fc
self.fc = fc

def forward(self, x):
unmapped_logits = self.fc(x)

# Mask by default unseen classes
mapped_logits = (
torch.ones(len(unmapped_logits), np.max(self.class_order) + 1) * -1000
)
mapped_logits.to(x.device)

# Now map to classes
mapped_logits[:, self.class_order] = unmapped_logits

return mapped_logits

def _generate_fc(self, in_dim, out_dim):
fc = SplitCosineLinear(
in_dim, self.fc.out_features, out_dim - self.fc.out_features
)
return fc


__all__ = ["CosineLinear", "CosineIncrementalClassifier"]
Loading

0 comments on commit 69259e3

Please sign in to comment.