Skip to content

A group project for the "Data Science in Earth Observation" module (WS 23/24, TUM).

Notifications You must be signed in to change notification settings

ColinMoldenhauer/DatSciEO

Repository files navigation

DatSciEO

A group project for the "Data Science in Earth Observation" module (WS 23/24, TUM)



Project tasks:

  • Use Sentinel-2 multi-spectral imagery to derive the dominant tree species for forests in Germany
  • Dominant tree species shall be classified by a machine-learning approach trained through the provided reference data

How to start:

  • Create an environment by typing conda create --name <name> python=3.10
  • Activate the environment by typing conda activate <name>
  • Run the command pip install -r requirements.txt

Results

Model Dataset Accuracy
SVM (Handeul) ᛫ top10
᛫ split 0.8/0.2
᛫ augm?
47.22 %
KNN (Yi) ᛫ top10
᛫ split ?
᛫ augm?
40 %
MLP (Yi) ᛫ top10
᛫ split ?
᛫ augm?
22 %
ConvNet (Colin) ᛫ top10
᛫ split 0.7/0.3 (42)
᛫ mirror, 90°, 180°
46 %
ResNet (Colin) ᛫ top10
᛫ split 0.7/0.3 (42)
᛫ mirror, 90°, 180°
49 %
ResNetDropout (Colin) ᛫ top10
᛫ split 0.7/0.3 (42)
᛫ mirror, 90°, 180°
49 %
Random Forest Classifier
with hyperparameter optimization (Chris)

- split 0.7/0.3
- 57928 samples
- data augmentation included
- no autumn bands
- no nan-values
44 %

About

A group project for the "Data Science in Earth Observation" module (WS 23/24, TUM).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published