Skip to content

Commit e50335b

Browse files
authored
Specifying data types (#5893)
* add documentation for specifying data types in Pytorch tensors * Updated tags.md and added new directory for specifying data types * add main file to the branch * Update specifying-data-types.md minor fixes * Update yarn.lock * Update content/pytorch/concepts/tensor-operations/terms/specifiying-data-types/specifying-data-types.md * Update content/pytorch/concepts/tensor-operations/terms/specifiying-data-types/specifying-data-types.md * Update content/pytorch/concepts/tensor-operations/terms/specifiying-data-types/specifying-data-types.md * Update content/pytorch/concepts/tensor-operations/terms/specifiying-data-types/specifying-data-types.md * Fix file path ---------
1 parent 30f61d7 commit e50335b

File tree

2 files changed

+70
-0
lines changed

2 files changed

+70
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,69 @@
1+
---
2+
Title: 'Specifying Data Types'
3+
Description: 'Determines how tensors are stored and processed, impacting precision, memory usage, and computation speed.'
4+
Subjects:
5+
- 'Data Science'
6+
- 'Machine Learning'
7+
- 'Deep Learning'
8+
Tags:
9+
- 'Pytorch'
10+
- 'Tensor'
11+
- 'Data Types'
12+
CatalogContent:
13+
- 'learn-Intro-to-PyTorch-and-Neural-Networks'
14+
- 'paths/data-science'
15+
---
16+
17+
In PyTorch, specifying the data types for [`tensors`](https://www.codecademy.com/resources/docs/pytorch/tensors) is crucial as they are the core data structures used to store and process data. Each tensor's data type (`dtype`) defines the kind of values it holds (e.g., `integer`, `float`, `boolean`), ensuring precision, improving performance, and maintaining compatibility during computations.
18+
19+
## Syntax
20+
21+
To specify a data type in a PyTorch tensor, use the `dtype` parameter when creating a tensor or the `.to()` method for converting an existing one.
22+
23+
### For specifying `dtype` when creating a tensor
24+
25+
```pseudo
26+
torch.tensor(data, dtype=torch.<data_type>)
27+
```
28+
29+
- `data`: The input data used to create the tensor. This can be a list, NumPy array, or another tensor.
30+
- `dtype`: Specifies the data type of the tensor. Common data types include:
31+
- `torch.float32` (default): 32-bit floating-point
32+
- `torch.float64`: 64-bit floating-point
33+
- `torch.int32`: 32-bit integer
34+
- `torch.int64`: 64-bit integer
35+
- `torch.bool`: Boolean
36+
37+
### For converting an existing tensor to a different data type
38+
39+
```pseudo
40+
tensor.to(torch.<data_type>)
41+
```
42+
43+
## Example
44+
45+
In the example below a tensor is created with a specified data type, another with a different type, and one tensor is converted to a new data type:
46+
47+
```py
48+
import torch
49+
50+
# Creating a float32 tensor
51+
float_tensor = torch.tensor([1.0, 2.0, 3.0], dtype=torch.float32)
52+
print(float_tensor)
53+
54+
# Creating an int64 tensor
55+
int_tensor = torch.tensor([1, 2, 3], dtype=torch.int64)
56+
print(int_tensor)
57+
58+
# Converting a tensor to a different data type
59+
converted_tensor = float_tensor.to(torch.int64)
60+
print(converted_tensor)
61+
```
62+
63+
The code above generates the output as:
64+
65+
```shell
66+
tensor([1., 2., 3.])
67+
tensor([1, 2, 3])
68+
tensor([1, 2, 3])
69+
```

documentation/tags.md

+1
Original file line numberDiff line numberDiff line change
@@ -336,6 +336,7 @@ Tags
336336
Target
337337
Technical Interviews
338338
Templates
339+
Tensor
339340
TensorFlow
340341
Text-To-Image
341342
Text Processing

0 commit comments

Comments
 (0)