Skip to content

Commit 3870e1b

Browse files
committed
Add Park and Chung paper and add some detail to other referencing papers.
1 parent 89c42ff commit 3870e1b

File tree

2 files changed

+11
-9
lines changed

2 files changed

+11
-9
lines changed

FTorch.md

+8-7
Original file line numberDiff line numberDiff line change
@@ -83,16 +83,17 @@ Projects using FTorch
8383
The following projects make use of FTorch.
8484
If you use our library in your work please let us know.
8585

86-
* [M2LInES CAM-ML](https://github.com/m2lines/CAM-ML) -
87-
Using FTorch to couple a neural net parameterisation of convection to the CAM
88-
atmospheric model in CESM.
8986
* [DataWave CAM-GW](https://github.com/DataWaveProject/CAM/) -
9087
Using FTorch to couple neural net parameterisations of gravity waves to the CAM
9188
atmospheric model.
9289
* [MiMA Machine Learning](https://github.com/DataWaveProject/MiMA-machine-learning) -
93-
Using FTorch to couple a neural net parameterisation of gravity waves to the MiMA
94-
atmospheric model.
90+
Implementing a neural net parameterisation of gravity waves in the MiMA atmospheric model.
91+
Demonstrates that nets trained near-identically offline can display greatly varied behaviours when coupled online.
9592
See Mansfield and Sheshadri (2024) - [DOI: 10.1029/2024MS004292](https://doi.org/10.1029/2024MS004292)
9693
* [Convection parameterisations in ICON](https://github.com/EyringMLClimateGroup/heuer23_ml_convection_parameterization) -
97-
Implementing machine learnt convection parameterisations in the ICON atmospheric model.
98-
See Heuer et al (2023) - [DOI: 10.48550/arXiv.2311.03251](https://doi.org/10.48550/arXiv.2311.03251)
94+
Implementing machine-learnt convection parameterisations in the ICON atmospheric model
95+
showing that best online performance occurs when causal relations are eliminated from the net.
96+
See Heuer et al (2024) - [DOI: 10.1029/2024MS004398](https://doi.org/10.1029/2024MS004398)
97+
* In the [GloSea6 Seasonal Forecasting Model](https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/user-guide/global-seasonal-forecasting-system-glosea6) -
98+
Replacing a BiCGStab bottleneck in the code with a deep learning approach to speed up execution without compromising model accuracy.
99+
See Park and Chung (2025) - [DOI: 10.3390/atmos16010060](https://doi.org/10.3390/atmos16010060)

README.md

+3-2
Original file line numberDiff line numberDiff line change
@@ -304,11 +304,12 @@ for a full list of contributors.
304304
## Used by
305305
The following projects make use of this code or derivatives in some way:
306306
307-
* [M2LInES CAM-ML](https://github.com/m2lines/CAM-ML)
308307
* [DataWave CAM-GW](https://github.com/DataWaveProject/CAM/)
309308
* [DataWave - MiMA ML](https://github.com/DataWaveProject/MiMA-machine-learning)\
310309
See Mansfield and Sheshadri (2024) - [DOI: 10.1029/2024MS004292](https://doi.org/10.1029/2024MS004292)
311310
* [Convection parameterisations in ICON](https://github.com/EyringMLClimateGroup/heuer23_ml_convection_parameterization)\
312-
See Heuer et al. (2023) - [DOI: 10.48550/arXiv.2311.03251](https://doi.org/10.48550/arXiv.2311.03251)
311+
See Heuer et al. (2024) - [DOI: 10.1029/2024MS004398](https://doi.org/10.1029/2024MS004398)
312+
* To replace a BiCGStab bottleneck in the GloSea6 Seasonal Forecasting model\
313+
See Park and Chung (2025) - [DOI: 10.3390/atmos16010060](https://doi.org/10.3390/atmos16010060)
313314
314315
Are we missing anyone? Let us know.

0 commit comments

Comments
 (0)