Skip to content

Bobby122883/Bbb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

/** *Submitted for verification at cronoscan.com on 2022-01-08 */

// Sources flattened with hardhat v2.7.0 https://hardhat.org

// File contracts/StandardToken.sol

pragma solidity ^0.6.12;

/**

  • @dev Interface of the ERC20 standard as defined in the EIP. / interface IERC20 { /*

    • @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256);

    /**

    • @dev Returns the amount of tokens owned by account. */ function balanceOf(address account) external view returns (uint256);

    /**

    • @dev Moves amount tokens from the caller's account to recipient.
    • Returns a boolean value indicating whether the operation succeeded.
    • Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool);

    /**

    • @dev Returns the remaining number of tokens that spender will be
    • allowed to spend on behalf of owner through {transferFrom}. This is
    • zero by default.
    • This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256);

    /**

    • @dev Sets amount as the allowance of spender over the caller's tokens.
    • Returns a boolean value indicating whether the operation succeeded.
    • IMPORTANT: Beware that changing an allowance with this method brings the risk
    • that someone may use both the old and the new allowance by unfortunate
    • transaction ordering. One possible solution to mitigate this race
    • condition is to first reduce the spender's allowance to 0 and set the
    • desired value afterwards:
    • ethereum/EIPs#20 (comment)
    • Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool);

    /**

    • @dev Moves amount tokens from sender to recipient using the
    • allowance mechanism. amount is then deducted from the caller's
    • allowance.
    • Returns a boolean value indicating whether the operation succeeded.
    • Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool);

    /**

    • @dev Emitted when value tokens are moved from one account (from) to
    • another (to).
    • Note that value may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value);

    /**

    • @dev Emitted when the allowance of a spender for an owner is set by
    • a call to {approve}. value is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); }

/**

  • @dev Interface for the optional metadata functions from the ERC20 standard.

  • Available since v4.1. / interface IERC20Metadata is IERC20 { /*

    • @dev Returns the name of the token. */ function name() external view returns (string memory);

    /**

    • @dev Returns the symbol of the token. */ function symbol() external view returns (string memory);

    /**

    • @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }

/*

  • @dev Provides information about the current execution context, including the

  • sender of the transaction and its data. While these are generally available

  • via msg.sender and msg.data, they should not be accessed in such a direct

  • manner, since when dealing with meta-transactions the account sending and

  • paying for execution may not be the actual sender (as far as an application

  • is concerned).

  • This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; }

    function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see argotorg/solidity#2691 return msg.data; } }

/**

  • @dev Wrappers over Solidity's arithmetic operations with added overflow
  • checks.
  • Arithmetic operations in Solidity wrap on overflow. This can easily result
  • in bugs, because programmers usually assume that an overflow raises an
  • error, which is the standard behavior in high level programming languages.
  • SafeMath restores this intuition by reverting the transaction when an
  • operation overflows.
  • Using this library instead of the unchecked operations eliminates an entire
  • class of bugs, so it's recommended to use it always. */

library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's + operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow");

    return c;
}

/**
 * @dev Returns the subtraction of two unsigned integers, reverting on
 * overflow (when the result is negative).
 *
 * Counterpart to Solidity's `-` operator.
 *
 * Requirements:
 *
 * - Subtraction cannot overflow.
 */
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    return sub(a, b, "SafeMath: subtraction overflow");
}

/**
 * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
 * overflow (when the result is negative).
 *
 * Counterpart to Solidity's `-` operator.
 *
 * Requirements:
 *
 * - Subtraction cannot overflow.
 */
function sub(
    uint256 a,
    uint256 b,
    string memory errorMessage
) internal pure returns (uint256) {
    require(b <= a, errorMessage);
    uint256 c = a - b;

    return c;
}

/**
 * @dev Returns the multiplication of two unsigned integers, reverting on
 * overflow.
 *
 * Counterpart to Solidity's `*` operator.
 *
 * Requirements:
 *
 * - Multiplication cannot overflow.
 */
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
    if (a == 0) {
        return 0;
    }

    uint256 c = a * b;
    require(c / a == b, "SafeMath: multiplication overflow");

    return c;
}

/**
 * @dev Returns the integer division of two unsigned integers. Reverts on
 * division by zero. The result is rounded towards zero.
 *
 * Counterpart to Solidity's `/` operator. Note: this function uses a
 * `revert` opcode (which leaves remaining gas untouched) while Solidity
 * uses an invalid opcode to revert (consuming all remaining gas).
 *
 * Requirements:
 *
 * - The divisor cannot be zero.
 */
function div(uint256 a, uint256 b) internal pure returns (uint256) {
    return div(a, b, "SafeMath: division by zero");
}

/**
 * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
 * division by zero. The result is rounded towards zero.
 *
 * Counterpart to Solidity's `/` operator. Note: this function uses a
 * `revert` opcode (which leaves remaining gas untouched) while Solidity
 * uses an invalid opcode to revert (consuming all remaining gas).
 *
 * Requirements:
 *
 * - The divisor cannot be zero.
 */
function div(
    uint256 a,
    uint256 b,
    string memory errorMessage
) internal pure returns (uint256) {
    require(b > 0, errorMessage);
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold

    return c;
}

/**
 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
 * Reverts when dividing by zero.
 *
 * Counterpart to Solidity's `%` operator. This function uses a `revert`
 * opcode (which leaves remaining gas untouched) while Solidity uses an
 * invalid opcode to revert (consuming all remaining gas).
 *
 * Requirements:
 *
 * - The divisor cannot be zero.
 */
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
    return mod(a, b, "SafeMath: modulo by zero");
}

/**
 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
 * Reverts with custom message when dividing by zero.
 *
 * Counterpart to Solidity's `%` operator. This function uses a `revert`
 * opcode (which leaves remaining gas untouched) while Solidity uses an
 * invalid opcode to revert (consuming all remaining gas).
 *
 * Requirements:
 *
 * - The divisor cannot be zero.
 */
function mod(
    uint256 a,
    uint256 b,
    string memory errorMessage
) internal pure returns (uint256) {
    require(b != 0, errorMessage);
    return a % b;
}

}

/**

  • @dev Contract module which provides a basic access control mechanism, where

  • there is an account (an owner) that can be granted exclusive access to

  • specific functions.

  • By default, the owner account will be the one that deploys the contract. This

  • can later be changed with {transferOwnership}.

  • This module is used through inheritance. It will make available the modifier

  • onlyOwner, which can be applied to your functions to restrict their use to

  • the owner. */ contract Ownable is Context { address private _owner; address private _previousOwner; uint256 private _lockTime;

    event OwnershipTransferred( address indexed previousOwner, address indexed newOwner );

    /**

    • @dev Initializes the contract setting the deployer as the initial owner. */ constructor() public { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); }

    /**

    • @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; }

    /**

    • @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; }

    /**

    • @dev Leaves the contract without owner. It will not be possible to call
    • onlyOwner functions anymore. Can only be called by the current owner.
    • NOTE: Renouncing ownership will leave the contract without an owner,
    • thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); }

    /**

    • @dev Transfers ownership of the contract to a new account (newOwner).
    • Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; }

    function geUnlockTime() public view returns (uint256) { return _lockTime; }

    //Locks the contract for owner for the amount of time provided function lock(uint256 time) public virtual onlyOwner { _previousOwner = _owner; _owner = address(0); _lockTime = block.timestamp + time; emit OwnershipTransferred(_owner, address(0)); }

    //Unlocks the contract for owner when _lockTime is exceeds function unlock() public virtual { require( _previousOwner == msg.sender, "You don't have permission to unlock" ); require(block.timestamp > _lockTime, "Contract is locked until 7 days"); emit OwnershipTransferred(_owner, _previousOwner); _owner = _previousOwner; } }

contract standardToken is Context, IERC20, IERC20Metadata, Ownable { mapping(address => uint256) private _balances;

mapping(address => mapping(address => uint256)) private _allowances;
bool public generatedUsingDxMint = true;
uint256 private _totalSupply;
bool public mintingFinishedPermanent = false;
string private _name;
string private _symbol;
uint8 private _decimals;
address public _creator;

/**
 * @dev Sets the values for {name}, {symbol} and {decimals}.
 *
 *
 * All two of these values are immutable: they can only be set once during
 * construction.
 */
constructor(
    address creator_,
    string memory name_,
    string memory symbol_,
    uint8 decimals_,
    uint256 tokenSupply_
) public {
    _name = name_;
    _symbol = symbol_;
    _decimals = decimals_;
    _creator = creator_;

    _mint(_creator, tokenSupply_);
    mintingFinishedPermanent = true;
}

/**
 * @dev Returns the name of the token.
 */
function name() public view virtual override returns (string memory) {
    return _name;
}

/**
 * @dev Returns the symbol of the token, usually a shorter version of the
 * name.
 */
function symbol() public view virtual override returns (string memory) {
    return _symbol;
}

/**
 * @dev Returns the number of decimals used to get its user representation.
 * For example, if `decimals` equals `2`, a balance of `505` tokens should
 * be displayed to a user as `5,05` (`505 / 10 ** 2`).
 *
 * Tokens usually opt for a value of 18, imitating the relationship between
 * Ether and Wei. This is the value {ERC20} uses, unless this function is
 * overridden;
 *
 * NOTE: This information is only used for _display_ purposes: it in
 * no way affects any of the arithmetic of the contract, including
 * {IERC20-balanceOf} and {IERC20-transfer}.
 */
function decimals() public view virtual override returns (uint8) {
    return _decimals;
}

/**
 * @dev See {IERC20-totalSupply}.
 */
function totalSupply() public view virtual override returns (uint256) {
    return _totalSupply;
}

/**
 * @dev See {IERC20-balanceOf}.
 */
function balanceOf(address account)
    public
    view
    virtual
    override
    returns (uint256)
{
    return _balances[account];
}

/**
 * @dev See {IERC20-transfer}.
 *
 * Requirements:
 *
 * - `recipient` cannot be the zero address.
 * - the caller must have a balance of at least `amount`.
 */
function transfer(address recipient, uint256 amount)
    public
    virtual
    override
    returns (bool)
{
    _transfer(_msgSender(), recipient, amount);
    return true;
}

/**
 * @dev See {IERC20-allowance}.
 */
function allowance(address owner, address spender)
    public
    view
    virtual
    override
    returns (uint256)
{
    return _allowances[owner][spender];
}

/**
 * @dev See {IERC20-approve}.
 *
 * Requirements:
 *
 * - `spender` cannot be the zero address.
 */
function approve(address spender, uint256 amount)
    public
    virtual
    override
    returns (bool)
{
    _approve(_msgSender(), spender, amount);
    return true;
}

/**
 * @dev See {IERC20-transferFrom}.
 *
 * Emits an {Approval} event indicating the updated allowance. This is not
 * required by the EIP. See the note at the beginning of {ERC20}.
 *
 * Requirements:
 *
 * - `sender` and `recipient` cannot be the zero address.
 * - `sender` must have a balance of at least `amount`.
 * - the caller must have allowance for ``sender``'s tokens of at least
 * `amount`.
 */
function transferFrom(
    address sender,
    address recipient,
    uint256 amount
) public virtual override returns (bool) {
    _transfer(sender, recipient, amount);

    uint256 currentAllowance = _allowances[sender][_msgSender()];
    require(
        currentAllowance >= amount,
        "ERC20: transfer amount exceeds allowance"
    );
    _approve(sender, _msgSender(), currentAllowance - amount);

    return true;
}

/**
 * @dev Atomically increases the allowance granted to `spender` by the caller.
 *
 * This is an alternative to {approve} that can be used as a mitigation for
 * problems described in {IERC20-approve}.
 *
 * Emits an {Approval} event indicating the updated allowance.
 *
 * Requirements:
 *
 * - `spender` cannot be the zero address.
 */
function increaseAllowance(address spender, uint256 addedValue)
    public
    virtual
    returns (bool)
{
    _approve(
        _msgSender(),
        spender,
        _allowances[_msgSender()][spender] + addedValue
    );
    return true;
}

/**
 * @dev Atomically decreases the allowance granted to `spender` by the caller.
 *
 * This is an alternative to {approve} that can be used as a mitigation for
 * problems described in {IERC20-approve}.
 *
 * Emits an {Approval} event indicating the updated allowance.
 *
 * Requirements:
 *
 * - `spender` cannot be the zero address.
 * - `spender` must have allowance for the caller of at least
 * `subtractedValue`.
 */
function decreaseAllowance(address spender, uint256 subtractedValue)
    public
    virtual
    returns (bool)
{
    uint256 currentAllowance = _allowances[_msgSender()][spender];
    require(
        currentAllowance >= subtractedValue,
        "ERC20: decreased allowance below zero"
    );
    _approve(_msgSender(), spender, currentAllowance - subtractedValue);

    return true;
}

/**
 * @dev Moves tokens `amount` from `sender` to `recipient`.
 *
 * This is internal function is equivalent to {transfer}, and can be used to
 * e.g. implement automatic token fees, slashing mechanisms, etc.
 *
 * Emits a {Transfer} event.
 *
 * Requirements:
 *
 * - `sender` cannot be the zero address.
 * - `recipient` cannot be the zero address.
 * - `sender` must have a balance of at least `amount`.
 */
function _transfer(
    address sender,
    address recipient,
    uint256 amount
) internal virtual {
    require(sender != address(0), "ERC20: transfer from the zero address");
    require(recipient != address(0), "ERC20: transfer to the zero address");

    _beforeTokenTransfer(sender, recipient, amount);

    uint256 senderBalance = _balances[sender];
    require(
        senderBalance >= amount,
        "ERC20: transfer amount exceeds balance"
    );
    _balances[sender] = senderBalance - amount;
    _balances[recipient] += amount;

    emit Transfer(sender, recipient, amount);
}

/** @dev Creates `amount` tokens and assigns them to `account`, increasing
 * the total supply.
 *
 * Emits a {Transfer} event with `from` set to the zero address.
 *
 * Requirements:
 *
 * - `account` cannot be the zero address.
 */
function _mint(address account, uint256 amount) internal virtual {
    require(!mintingFinishedPermanent, "cant be minted anymore!");
    require(account != address(0), "ERC20: mint to the zero address");

    _beforeTokenTransfer(address(0), account, amount);

    _totalSupply += amount;
    _balances[account] += amount;
    emit Transfer(address(0), account, amount);
}

/**
 * @dev Destroys `amount` tokens from `account`, reducing the
 * total supply.
 *
 * Emits a {Transfer} event with `to` set to the zero address.
 *
 * Requirements:
 *
 * - `account` cannot be the zero address.
 * - `account` must have at least `amount` tokens.
 */
function _burn(address account, uint256 amount) internal virtual {
    require(account != address(0), "ERC20: burn from the zero address");

    _beforeTokenTransfer(account, address(0), amount);

    uint256 accountBalance = _balances[account];
    require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
    _balances[account] = accountBalance - amount;
    _totalSupply -= amount;

    emit Transfer(account, address(0), amount);
}

/**
 * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
 *
 * This internal function is equivalent to `approve`, and can be used to
 * e.g. set automatic allowances for certain subsystems, etc.
 *
 * Emits an {Approval} event.
 *
 * Requirements:
 *
 * - `owner` cannot be the zero address.
 * - `spender` cannot be the zero address.
 */
function _approve(
    address owner,
    address spender,
    uint256 amount
) internal virtual {
    require(owner != address(0), "ERC20: approve from the zero address");
    require(spender != address(0), "ERC20: approve to the zero address");

    _allowances[owner][spender] = amount;
    emit Approval(owner, spender, amount);
}

/**
 * @dev Hook that is called before any transfer of tokens. This includes
 * minting and burning.
 *
 * Calling conditions:
 *
 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
 * will be to transferred to `to`.
 * - when `from` is zero, `amount` tokens will be minted for `to`.
 * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
 * - `from` and `to` are never both zero.
 *
 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
 */
function _beforeTokenTransfer(
    address from,
    address to,
    uint256 amount
) internal virtual {}

}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published