Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Transpose #375

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 163 additions & 0 deletions bench/ndarray/transpose.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
{
"cells": [
{
"metadata": {},
"cell_type": "code",
"source": [
"import numpy as np\n",
"import blosc2\n",
"import time\n",
"import plotly.express as px\n",
"import pandas as pd"
],
"id": "55765646130156ef",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"sizes = [(100, 100), (500, 500), (500, 1000), (1000, 1000), (2000, 2000), (3000, 3000), (4000, 4000), (5000, 5000)]\n",
"sizes_mb = [(np.prod(size) * 8) / 2**20 for size in sizes] # Convert to MB\n",
"results = {\"numpy\": [], \"blosc2\": []}"
],
"id": "1cfb7daa6eee1401",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"for method in [\"numpy\", \"blosc2\"]:\n",
" for size in sizes:\n",
" arr = np.random.rand(*size)\n",
" arr_b2 = blosc2.asarray(arr)\n",
"\n",
" start_time = time.perf_counter()\n",
"\n",
" if method == \"numpy\":\n",
" np.transpose(arr).copy()\n",
" elif method == \"blosc2\":\n",
" blosc2.transpose(arr_b2)\n",
"\n",
" end_time = time.perf_counter()\n",
" time_b = end_time - start_time\n",
"\n",
" print(f\"{method}: shape={size}, Performance = {time_b:.6f} s\")\n",
" results[method].append(time_b)"
],
"id": "384d0ad7983a8d26",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"df = pd.DataFrame({\n",
" \"Matrix Size (MB)\": sizes_mb,\n",
" \"NumPy Time (s)\": results[\"numpy\"],\n",
" \"Blosc2 Time (s)\": results[\"blosc2\"]\n",
"})\n",
"\n",
"fig = px.line(df,\n",
" x=\"Matrix Size (MB)\",\n",
" y=[\"NumPy Time (s)\", \"Blosc2 Time (s)\"],\n",
" title=\"Performance of Matrix Transposition (NumPy vs Blosc2)\",\n",
" labels={\"value\": \"Time (s)\", \"variable\": \"Method\"},\n",
" markers=True)\n",
"\n",
"fig.show()"
],
"id": "c71ffb39eb28992c",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"%%time\n",
"shapes = [\n",
" (100, 100), (2000, 2000), (3000, 3000), (4000, 4000), (3000, 7000),\n",
" (5000, 5000), (6000, 6000), (7000, 7000), (8000, 8000), (6000, 12000),\n",
" (9000, 9000), (10000, 10000),\n",
" (10500, 10500), (11000, 11000), (11500, 11500), (12000, 12000),\n",
" (12500, 12500), (13000, 13000), (13500, 13500), (14000, 14000),\n",
" (14500, 14500), (15000, 15000), (15500, 15500), (16000, 16000),\n",
" (16500, 16500), (17000, 17000)\n",
"]\n",
"chunkshapes = [None, (150, 300), (200, 500), (500, 200), (1000, 1000)]\n",
"\n",
"sizes = []\n",
"time_total = []\n",
"chunk_labels = []\n",
"\n",
"for shape in shapes:\n",
" size_mb = (np.prod(shape) * 8) / (2 ** 20)\n",
"\n",
" matrix_np = np.linspace(0, 1, np.prod(shape)).reshape(shape)\n",
"\n",
" t0 = time.perf_counter()\n",
" result_numpy = np.transpose(matrix_np).copy()\n",
" numpy_time = time.perf_counter() - t0\n",
"\n",
" time_total.append(numpy_time)\n",
" sizes.append(size_mb)\n",
" chunk_labels.append(\"NumPy\")\n",
"\n",
" print(f\"NumPy: Shape={shape}, Time = {numpy_time:.6f} s\")\n",
"\n",
" for chunk in chunkshapes:\n",
" matrix_blosc2 = blosc2.asarray(matrix_np, chunks=chunk)\n",
"\n",
" t0 = time.perf_counter()\n",
" result_blosc2 = blosc2.transpose(matrix_blosc2)\n",
" blosc2_time = time.perf_counter() - t0\n",
"\n",
" sizes.append(size_mb)\n",
" time_total.append(blosc2_time)\n",
" chunk_labels.append(f\"{chunk[0]}x{chunk[1]}\" if chunk else \"Auto\")\n",
"\n",
" print(f\"Blosc2: Shape={shape}, Chunks = {matrix_blosc2.chunks}, Time = {blosc2_time:.6f} s\")\n",
"\n",
"df = pd.DataFrame({\n",
" \"Matrix Size (MB)\": sizes,\n",
" \"Time (s)\": time_total,\n",
" \"Chunk Shape\": chunk_labels\n",
"})\n",
"\n",
"fig = px.line(df,\n",
" x=\"Matrix Size (MB)\",\n",
" y=\"Time (s)\",\n",
" color=\"Chunk Shape\",\n",
" title=\"Performance of Matrix Transposition (Blosc2 vs NumPy)\",\n",
" labels={\"value\": \"Time (s)\", \"variable\": \"Metric\"},\n",
" markers=True)\n",
"fig.show()"
],
"id": "bcdd8aa5f65df561",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": "",
"id": "1d2f48f370ba7e7a",
"outputs": [],
"execution_count": null
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"language": "python",
"display_name": "Python 3 (ipykernel)"
}
},
"nbformat": 5,
"nbformat_minor": 9
}
1 change: 1 addition & 0 deletions doc/reference/linear_algebra.rst
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,4 @@ The next functions can be used for computing linear algebra operations with :ref
:nosignatures:

matmul
transpose
1 change: 1 addition & 0 deletions src/blosc2/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,6 +248,7 @@ class Tuner(Enum):
full,
save,
matmul,
transpose,
)

from .c2array import c2context, C2Array, URLPath
Expand Down
43 changes: 43 additions & 0 deletions src/blosc2/ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -3766,6 +3766,49 @@ def matmul(x1: NDArray, x2: NDArray, **kwargs: Any) -> NDArray:
return result.squeeze()


def transpose(x, **kwargs: Any) -> NDArray:
"""
Returns a Blosc2 NDArray with axes transposed.

Parameters
----------
x: `NDArray`
The input array.
kwargs: Any, optional
Keyword arguments that are supported by the :func:`empty` constructor.

Returns
-------
out: :ref:`NDArray`
The Blosc2 NDArray with axes transposed.

References
----------
`numpy.transpose <https://numpy.org/doc/2.2/reference/generated/numpy.transpose.html>`_
"""

# If arguments are dimension < 2 they are returned
if np.isscalar(x) or x.ndim < 2:
return x

# Validate arguments are dimension 2
if x.ndim > 2:
raise ValueError("Transposing arrays with dimension greater than 2 is not supported yet.")

n, m = x.shape
p, q = x.chunks
result = blosc2.zeros((m, n), dtype=np.result_type(x), **kwargs)

for row in range(0, n, p):
row_end = (row + p) if (row + p) < n else n
for col in range(0, m, q):
col_end = (col + q) if (col + q) < m else m
aux = x[row:row_end, col:col_end]
result[col:col_end, row:row_end] = np.transpose(aux).copy()

return result


# Class for dealing with fields in an NDArray
# This will allow to access fields by name in the dtype of the NDArray
class NDField(Operand):
Expand Down
45 changes: 42 additions & 3 deletions tests/ndarray/test_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,50 @@
)
@pytest.mark.parametrize(
"dtype",
{np.float32, np.float64, np.complex64, np.complex128},
{np.float32, np.float64},
)
def test_matmul(ashape, achunks, ablocks, bshape, bchunks, bblocks, dtype):
a = blosc2.linspace(0, 10, dtype=dtype, shape=ashape, chunks=achunks, blocks=ablocks)
b = blosc2.linspace(0, 10, dtype=dtype, shape=bshape, chunks=bchunks, blocks=bblocks)
a = blosc2.linspace(0, 1, dtype=dtype, shape=ashape, chunks=achunks, blocks=ablocks)
b = blosc2.linspace(0, 1, dtype=dtype, shape=bshape, chunks=bchunks, blocks=bblocks)
c = blosc2.matmul(a, b)

na = a[:]
nb = b[:]
nc = np.matmul(na, nb)

np.testing.assert_allclose(c, nc, rtol=1e-6)


@pytest.mark.parametrize(
("ashape", "achunks", "ablocks"),
{
((12, 10), (7, 5), (3, 3)),
((10,), (9,), (7,)),
},
)
@pytest.mark.parametrize(
("bshape", "bchunks", "bblocks"),
{
((10,), (4,), (2,)),
((10, 5), (3, 4), (1, 3)),
((10, 12), (2, 4), (1, 2)),
},
)
@pytest.mark.parametrize(
"dtype",
{np.complex64, np.complex128},
)
def test_complex(ashape, achunks, ablocks, bshape, bchunks, bblocks, dtype):
real_part = blosc2.linspace(0, 1, shape=ashape, chunks=achunks, blocks=ablocks, dtype=dtype)
imag_part = blosc2.linspace(0, 1, shape=ashape, chunks=achunks, blocks=ablocks, dtype=dtype)
complex_matrix_a = real_part + 1j * imag_part
a = blosc2.asarray(complex_matrix_a)

real_part = blosc2.linspace(1, 2, shape=bshape, chunks=bchunks, blocks=bblocks, dtype=dtype)
imag_part = blosc2.linspace(1, 2, shape=bshape, chunks=bchunks, blocks=bblocks, dtype=dtype)
complex_matrix_b = real_part + 1j * imag_part
b = blosc2.asarray(complex_matrix_b)

c = blosc2.matmul(a, b)

na = a[:]
Expand Down
103 changes: 103 additions & 0 deletions tests/ndarray/test_transpose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
import numpy as np
import pytest

import blosc2


@pytest.fixture(
params=[
((3, 3), (2, 2), (1, 1)),
((12, 11), (7, 5), (6, 2)),
((1, 5), (1, 4), (1, 3)),
((51, 603), (22, 99), (13, 29)),
((10,), (5,), None),
]
)
def shape_chunks_blocks(request):
return request.param


@pytest.mark.parametrize(
"dtype",
{np.int32, np.int64, np.float32, np.float64},
)
def test_transpose(shape_chunks_blocks, dtype):
shape, chunks, blocks = shape_chunks_blocks
a = blosc2.linspace(0, 1, shape=shape, chunks=chunks, blocks=blocks, dtype=dtype)
at = blosc2.transpose(a)

na = a[:]
nat = np.transpose(na)

np.testing.assert_allclose(at, nat)


@pytest.mark.parametrize(
"dtype",
{np.complex64, np.complex128},
)
def test_complex(shape_chunks_blocks, dtype):
shape, chunks, blocks = shape_chunks_blocks
real_part = blosc2.linspace(0, 1, shape=shape, chunks=chunks, blocks=blocks, dtype=dtype)
imag_part = blosc2.linspace(0, 1, shape=shape, chunks=chunks, blocks=blocks, dtype=dtype)
complex_matrix = real_part + 1j * imag_part

a = blosc2.asarray(complex_matrix)
at = blosc2.transpose(a)

na = a[:]
nat = np.transpose(na)

np.testing.assert_allclose(at, nat)


@pytest.mark.parametrize(
"scalar",
{
1, # int
5.1, # float
1 + 2j, # complex
np.int8(2), # NumPy int8
np.int16(3), # NumPy int16
np.int32(4), # NumPy int32
np.int64(5), # NumPy int64
np.float32(5.2), # NumPy float32
np.float64(5.3), # NumPy float64
np.complex64(0 + 3j), # NumPy complex64
np.complex128(2 - 4j), # NumPy complex128
},
)
def test_scalars(scalar):
at = blosc2.transpose(scalar)
nat = np.transpose(scalar)

np.testing.assert_allclose(at, nat)


@pytest.mark.parametrize(
"shape",
[
(3, 3, 3),
(12, 10, 10),
(10, 10, 10, 11),
(5, 4, 3, 2, 1, 0),
],
)
def test_dims(shape):
a = blosc2.linspace(0, 1, shape=shape)

with pytest.raises(ValueError):
blosc2.transpose(a)


def test_disk():
a = blosc2.linspace(0, 1, shape=(3, 4), urlpath="a_test.b2nd", mode="w")
c = blosc2.transpose(a, urlpath="c_test.b2nd", mode="w")

na = a[:]
nc = np.transpose(na)

np.testing.assert_allclose(c, nc, rtol=1e-6)

blosc2.remove_urlpath("a_test.b2nd")
blosc2.remove_urlpath("c_test.b2nd")