This repository demonstrates how to build a modern FatAPI web application that integrates with both Azure AI Foundry Agents and LangGraph Agents. It provides a simple CRUD task list and two interactive chat agents.
- Task List: Simple CRUD web app application.
- LangGraph Agent: Chat with an agent powered by LangGraph.
- Azure AI Foundry Agent: Chat with an agent powered by Azure AI Foundry Agent Service.
- OpenAPI Schema: Enables integration with Azure AI Foundry agents.
.devcontainer/
└── devcontainer.json # Dev container configuration for VS Code
infra/
├── main.bicep # Bicep IaC template
├── main.parameters.json # Parameters for Bicep deployment
public/
└── index.html # React frontend
src/
├── __init__.py
├── app.py # Main FastAPI application
├── azure.yaml # Azure Developer CLI config
├── agents/ # AI agent implementations
│ ├── __init__.py
│ ├── foundry_task_agent.py # Azure AI Foundry agent
│ └── langgraph_task_agent.py # LangGraph agent
├── models/ # Pydantic models for data validation
│ └── __init__.py
├── routes/ # API route definitions
│ ├── __init__.py
│ └── api.py # Task and chat endpoints
└── services/ # Business logic services
├── __init__.py
└── task_service.py # Task CRUD operations with SQLite
tasks.db # SQLite database file
requirements.txt # Python dependencies
README.md # Project documentation