-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is the data and progam for Human Detection
- Loading branch information
Harsh Vijay
committed
Jul 4, 2019
1 parent
2ef8db2
commit 86b48a4
Showing
11 changed files
with
226 additions
and
88 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
model_checkpoint_path: "model.ckpt" | ||
all_model_checkpoint_paths: "model.ckpt" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
import cv2 | ||
import time | ||
import msvcrt | ||
|
||
|
||
video='TownCentreXVID.avi' | ||
|
||
class DetectorAPI: | ||
def __init__(self, path_to_ckpt): | ||
self.path_to_ckpt = path_to_ckpt | ||
|
||
self.detection_graph = tf.Graph() | ||
with self.detection_graph.as_default(): | ||
od_graph_def = tf.compat.v1.GraphDef() | ||
with tf.io.gfile.GFile(self.path_to_ckpt, 'rb') as fid: | ||
serialized_graph = fid.read() | ||
od_graph_def.ParseFromString(serialized_graph) | ||
tf.import_graph_def(od_graph_def, name='') | ||
|
||
self.default_graph = self.detection_graph.as_default() | ||
self.sess = tf.compat.v1.Session(graph=self.detection_graph) | ||
|
||
# Definite input and output Tensors for detection_graph | ||
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') | ||
# Each box represents a part of the image where a particular object was detected. | ||
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') | ||
# Each score represent how level of confidence for each of the objects. | ||
# Score is shown on the result image, together with the class label. | ||
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') | ||
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') | ||
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') | ||
|
||
def processFrame(self, image): | ||
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3] | ||
image_np_expanded = np.expand_dims(image, axis=0) | ||
# Actual detection. | ||
start_time = time.time() | ||
(boxes, scores, classes, num) = self.sess.run( | ||
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], | ||
feed_dict={self.image_tensor: image_np_expanded}) | ||
end_time = time.time() | ||
|
||
#print("Elapsed Time:", end_time-start_time) | ||
|
||
im_height, im_width,_ = image.shape | ||
boxes_list = [None for i in range(boxes.shape[1])] | ||
for i in range(boxes.shape[1]): | ||
boxes_list[i] = (int(boxes[0,i,0] * im_height), | ||
int(boxes[0,i,1]*im_width), | ||
int(boxes[0,i,2] * im_height), | ||
int(boxes[0,i,3]*im_width)) | ||
|
||
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0]) | ||
|
||
def close(self): | ||
self.sess.close() | ||
self.default_graph.close() | ||
|
||
if __name__ == "__main__": | ||
model_path = 'frozen_inference_graph.pb' | ||
odapi = DetectorAPI(path_to_ckpt=model_path) | ||
threshold = 0.7 | ||
cap = cv2.VideoCapture(video) | ||
print("Press ESC key to exit the program ") | ||
while True: | ||
r, img = cap.read() | ||
img = cv2.resize(img, (1280, 720)) | ||
|
||
boxes, scores, classes, num = odapi.processFrame(img) | ||
# Visualization of the results of a detection. | ||
count=0 | ||
for i in range(len(boxes)): | ||
# Class 1 represents human | ||
if classes[i] == 1 and scores[i] > threshold: | ||
box = boxes[i] | ||
cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,255),2) | ||
count+=1 | ||
print("NO of Humans are",count) | ||
|
||
cv2.imshow("preview", img) | ||
if cv2.waitKey(10) & 0xff==ord('q'): | ||
break | ||
|
||
|
||
cv2.destroyAllWindows() | ||
cap.release() | ||
print("BYEBYE") |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
model { | ||
faster_rcnn { | ||
num_classes: 90 | ||
image_resizer { | ||
keep_aspect_ratio_resizer { | ||
min_dimension: 600 | ||
max_dimension: 1024 | ||
} | ||
} | ||
feature_extractor { | ||
type: "faster_rcnn_inception_v2" | ||
first_stage_features_stride: 16 | ||
} | ||
first_stage_anchor_generator { | ||
grid_anchor_generator { | ||
height_stride: 16 | ||
width_stride: 16 | ||
scales: 0.25 | ||
scales: 0.5 | ||
scales: 1.0 | ||
scales: 2.0 | ||
aspect_ratios: 0.5 | ||
aspect_ratios: 1.0 | ||
aspect_ratios: 2.0 | ||
} | ||
} | ||
first_stage_box_predictor_conv_hyperparams { | ||
op: CONV | ||
regularizer { | ||
l2_regularizer { | ||
weight: 0.0 | ||
} | ||
} | ||
initializer { | ||
truncated_normal_initializer { | ||
stddev: 0.00999999977648 | ||
} | ||
} | ||
} | ||
first_stage_nms_score_threshold: 0.0 | ||
first_stage_nms_iou_threshold: 0.699999988079 | ||
first_stage_max_proposals: 100 | ||
first_stage_localization_loss_weight: 2.0 | ||
first_stage_objectness_loss_weight: 1.0 | ||
initial_crop_size: 14 | ||
maxpool_kernel_size: 2 | ||
maxpool_stride: 2 | ||
second_stage_box_predictor { | ||
mask_rcnn_box_predictor { | ||
fc_hyperparams { | ||
op: FC | ||
regularizer { | ||
l2_regularizer { | ||
weight: 0.0 | ||
} | ||
} | ||
initializer { | ||
variance_scaling_initializer { | ||
factor: 1.0 | ||
uniform: true | ||
mode: FAN_AVG | ||
} | ||
} | ||
} | ||
use_dropout: false | ||
dropout_keep_probability: 1.0 | ||
} | ||
} | ||
second_stage_post_processing { | ||
batch_non_max_suppression { | ||
score_threshold: 0.300000011921 | ||
iou_threshold: 0.600000023842 | ||
max_detections_per_class: 100 | ||
max_total_detections: 100 | ||
} | ||
score_converter: SOFTMAX | ||
} | ||
second_stage_localization_loss_weight: 2.0 | ||
second_stage_classification_loss_weight: 1.0 | ||
} | ||
} | ||
train_config { | ||
batch_size: 1 | ||
data_augmentation_options { | ||
random_horizontal_flip { | ||
} | ||
} | ||
optimizer { | ||
momentum_optimizer { | ||
learning_rate { | ||
manual_step_learning_rate { | ||
initial_learning_rate: 0.000199999994948 | ||
schedule { | ||
step: 0 | ||
learning_rate: 0.000199999994948 | ||
} | ||
schedule { | ||
step: 900000 | ||
learning_rate: 1.99999994948e-05 | ||
} | ||
schedule { | ||
step: 1200000 | ||
learning_rate: 1.99999999495e-06 | ||
} | ||
} | ||
} | ||
momentum_optimizer_value: 0.899999976158 | ||
} | ||
use_moving_average: false | ||
} | ||
gradient_clipping_by_norm: 10.0 | ||
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" | ||
from_detection_checkpoint: true | ||
num_steps: 200000 | ||
} | ||
train_input_reader { | ||
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" | ||
tf_record_input_reader { | ||
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record" | ||
} | ||
} | ||
eval_config { | ||
num_examples: 8000 | ||
max_evals: 10 | ||
use_moving_averages: false | ||
} | ||
eval_input_reader { | ||
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" | ||
shuffle: false | ||
num_readers: 1 | ||
tf_record_input_reader { | ||
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record" | ||
} | ||
} |
Binary file not shown.