|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 81, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "import pprint\n", |
| 11 | + "import sys\n", |
| 12 | + "if \"../\" not in sys.path:\n", |
| 13 | + " sys.path.append(\"../\") \n", |
| 14 | + "from lib.envs.gridworld import GridworldEnv" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 82, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "pp = pprint.PrettyPrinter(indent=2)\n", |
| 24 | + "env = GridworldEnv()" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 83, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "# Taken from Policy Evaluation Exercise!\n", |
| 34 | + "\n", |
| 35 | + "def policy_eval(policy, env, discount_factor=1.0, theta=0.00001):\n", |
| 36 | + " \"\"\"\n", |
| 37 | + " Evaluate a policy given an environment and a full description of the environment's dynamics.\n", |
| 38 | + " \n", |
| 39 | + " Args:\n", |
| 40 | + " policy: [S, A] shaped matrix representing the policy.\n", |
| 41 | + " env: OpenAI env. env.P represents the transition probabilities of the environment.\n", |
| 42 | + " env.P[s][a] is a list of transition tuples (prob, next_state, reward, done).\n", |
| 43 | + " env.nS is a number of states in the environment. \n", |
| 44 | + " env.nA is a number of actions in the environment.\n", |
| 45 | + " theta: We stop evaluation once our value function change is less than theta for all states.\n", |
| 46 | + " discount_factor: Gamma discount factor.\n", |
| 47 | + " \n", |
| 48 | + " Returns:\n", |
| 49 | + " Vector of length env.nS representing the value function.\n", |
| 50 | + " \"\"\"\n", |
| 51 | + " # Start with a random (all 0) value function\n", |
| 52 | + " V = np.zeros(env.nS)\n", |
| 53 | + " while True:\n", |
| 54 | + " delta = 0\n", |
| 55 | + " # For each state, perform a \"full backup\"\n", |
| 56 | + " for s in range(env.nS):\n", |
| 57 | + " v = 0\n", |
| 58 | + " # Look at the possible next actions\n", |
| 59 | + " for a, action_prob in enumerate(policy[s]):\n", |
| 60 | + " # For each action, look at the possible next states...\n", |
| 61 | + " for prob, next_state, reward, done in env.P[s][a]:\n", |
| 62 | + " # Calculate the expected value\n", |
| 63 | + " v += action_prob * prob * (reward + discount_factor * V[next_state])\n", |
| 64 | + " # How much our value function changed (across any states)\n", |
| 65 | + " delta = max(delta, np.abs(v - V[s]))\n", |
| 66 | + " V[s] = v\n", |
| 67 | + " # Stop evaluating once our value function change is below a threshold\n", |
| 68 | + " if delta < theta:\n", |
| 69 | + " break\n", |
| 70 | + " return np.array(V)" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 84, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "def policy_improvement(env, policy_eval_fn=policy_eval, discount_factor=1.0):\n", |
| 80 | + " \"\"\"\n", |
| 81 | + " Policy Improvement Algorithm. Iteratively evaluates and improves a policy\n", |
| 82 | + " until an optimal policy is found.\n", |
| 83 | + " \n", |
| 84 | + " Args:\n", |
| 85 | + " env: The OpenAI envrionment.\n", |
| 86 | + " policy_eval_fn: Policy Evaluation function that takes 3 arguments:\n", |
| 87 | + " policy, env, discount_factor.\n", |
| 88 | + " discount_factor: gamma discount factor.\n", |
| 89 | + " \n", |
| 90 | + " Returns:\n", |
| 91 | + " A tuple (policy, V). \n", |
| 92 | + " policy is the optimal policy, a matrix of shape [S, A] where each state s\n", |
| 93 | + " contains a valid probability distribution over actions.\n", |
| 94 | + " V is the value function for the optimal policy.\n", |
| 95 | + " \n", |
| 96 | + " \"\"\"\n", |
| 97 | + " # Start with a random policy\n", |
| 98 | + " policy = np.ones([env.nS, env.nA]) / env.nA\n", |
| 99 | + " \n", |
| 100 | + " while True:\n", |
| 101 | + " # Implement this!\n", |
| 102 | + " #We first evaluate the policy.\n", |
| 103 | + " v_pi = policy_eval_fn(policy, env, discount_factor)\n", |
| 104 | + " policy_stable = True\n", |
| 105 | + " #Going through all of the states, one by one\n", |
| 106 | + " for s in range(env.nS):\n", |
| 107 | + " \n", |
| 108 | + " old_action = np.argmax(policy[s])\n", |
| 109 | + " \n", |
| 110 | + " expected_values = np.zeros(env.nA)\n", |
| 111 | + " #Doing one-step-lookahead from the current state\n", |
| 112 | + " for a in range(env.nA):\n", |
| 113 | + " #For each action, we keep a record of expected return\n", |
| 114 | + " for prob, next_state, reward, done in env.P[s][a]:\n", |
| 115 | + " expected_values[a] += prob*(reward+discount_factor*v_pi[next_state])\n", |
| 116 | + " #Declaring new policy (Hence, new action), by acting greedy with respect to the current value function\n", |
| 117 | + " new_action = np.argmax(expected_values)\n", |
| 118 | + " \n", |
| 119 | + " if old_action!=new_action:\n", |
| 120 | + " policy_stable = False\n", |
| 121 | + " \n", |
| 122 | + " #Replacing new policy by new one. \n", |
| 123 | + " policy[s] = np.eye(env.nA)[new_action]\n", |
| 124 | + " \n", |
| 125 | + " #Checking if there's any change in past and new action, if no, then our job's done. \n", |
| 126 | + " if policy_stable:\n", |
| 127 | + " return policy, v_pi\n", |
| 128 | + " \n", |
| 129 | + " \n", |
| 130 | + " \n", |
| 131 | + " \n", |
| 132 | + " \n", |
| 133 | + " \n", |
| 134 | + " \n", |
| 135 | + " \n", |
| 136 | + " " |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": 85, |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [ |
| 144 | + { |
| 145 | + "name": "stdout", |
| 146 | + "output_type": "stream", |
| 147 | + "text": [ |
| 148 | + "1\n", |
| 149 | + "2\n", |
| 150 | + "5\n", |
| 151 | + "0\n" |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "source": [ |
| 156 | + "for key,val in env.P[1].items():\n", |
| 157 | + " print(val[0][1])" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": 86, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [ |
| 165 | + { |
| 166 | + "data": { |
| 167 | + "text/plain": [ |
| 168 | + "{0: [(1.0, 1, -1.0, False)],\n", |
| 169 | + " 1: [(1.0, 2, -1.0, False)],\n", |
| 170 | + " 2: [(1.0, 5, -1.0, False)],\n", |
| 171 | + " 3: [(1.0, 0, -1.0, True)]}" |
| 172 | + ] |
| 173 | + }, |
| 174 | + "execution_count": 86, |
| 175 | + "metadata": {}, |
| 176 | + "output_type": "execute_result" |
| 177 | + } |
| 178 | + ], |
| 179 | + "source": [ |
| 180 | + "env.P[1]" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": 87, |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [ |
| 188 | + { |
| 189 | + "name": "stdout", |
| 190 | + "output_type": "stream", |
| 191 | + "text": [ |
| 192 | + "Policy Probability Distribution:\n", |
| 193 | + "[[1. 0. 0. 0.]\n", |
| 194 | + " [0. 0. 0. 1.]\n", |
| 195 | + " [0. 0. 0. 1.]\n", |
| 196 | + " [0. 0. 1. 0.]\n", |
| 197 | + " [1. 0. 0. 0.]\n", |
| 198 | + " [1. 0. 0. 0.]\n", |
| 199 | + " [1. 0. 0. 0.]\n", |
| 200 | + " [0. 0. 1. 0.]\n", |
| 201 | + " [1. 0. 0. 0.]\n", |
| 202 | + " [1. 0. 0. 0.]\n", |
| 203 | + " [0. 1. 0. 0.]\n", |
| 204 | + " [0. 0. 1. 0.]\n", |
| 205 | + " [1. 0. 0. 0.]\n", |
| 206 | + " [0. 1. 0. 0.]\n", |
| 207 | + " [0. 1. 0. 0.]\n", |
| 208 | + " [1. 0. 0. 0.]]\n", |
| 209 | + "\n", |
| 210 | + "Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):\n", |
| 211 | + "[[0 3 3 2]\n", |
| 212 | + " [0 0 0 2]\n", |
| 213 | + " [0 0 1 2]\n", |
| 214 | + " [0 1 1 0]]\n", |
| 215 | + "\n", |
| 216 | + "Value Function:\n", |
| 217 | + "[ 0. -1. -2. -3. -1. -2. -3. -2. -2. -3. -2. -1. -3. -2. -1. 0.]\n", |
| 218 | + "\n", |
| 219 | + "Reshaped Grid Value Function:\n", |
| 220 | + "[[ 0. -1. -2. -3.]\n", |
| 221 | + " [-1. -2. -3. -2.]\n", |
| 222 | + " [-2. -3. -2. -1.]\n", |
| 223 | + " [-3. -2. -1. 0.]]\n", |
| 224 | + "\n" |
| 225 | + ] |
| 226 | + } |
| 227 | + ], |
| 228 | + "source": [ |
| 229 | + "policy, v = policy_improvement(env)\n", |
| 230 | + "print(\"Policy Probability Distribution:\")\n", |
| 231 | + "print(policy)\n", |
| 232 | + "print(\"\")\n", |
| 233 | + "\n", |
| 234 | + "print(\"Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):\")\n", |
| 235 | + "print(np.reshape(np.argmax(policy, axis=1), env.shape))\n", |
| 236 | + "print(\"\")\n", |
| 237 | + "\n", |
| 238 | + "print(\"Value Function:\")\n", |
| 239 | + "print(v)\n", |
| 240 | + "print(\"\")\n", |
| 241 | + "\n", |
| 242 | + "print(\"Reshaped Grid Value Function:\")\n", |
| 243 | + "print(v.reshape(env.shape))\n", |
| 244 | + "print(\"\")\n", |
| 245 | + "\n" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "code", |
| 250 | + "execution_count": 89, |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [ |
| 253 | + { |
| 254 | + "name": "stdout", |
| 255 | + "output_type": "stream", |
| 256 | + "text": [ |
| 257 | + "14.3 ms ± 270 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
| 258 | + ] |
| 259 | + } |
| 260 | + ], |
| 261 | + "source": [ |
| 262 | + "%timeit policy_improvement(env)" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "markdown", |
| 267 | + "metadata": {}, |
| 268 | + "source": [ |
| 269 | + "Clearly, this process is quite slow, for even a small problem like the given gridworld." |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": 88, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [], |
| 277 | + "source": [ |
| 278 | + "# Test the value function\n", |
| 279 | + "expected_v = np.array([ 0, -1, -2, -3, -1, -2, -3, -2, -2, -3, -2, -1, -3, -2, -1, 0])\n", |
| 280 | + "np.testing.assert_array_almost_equal(v, expected_v, decimal=2)" |
| 281 | + ] |
| 282 | + }, |
| 283 | + { |
| 284 | + "cell_type": "code", |
| 285 | + "execution_count": null, |
| 286 | + "metadata": {}, |
| 287 | + "outputs": [], |
| 288 | + "source": [] |
| 289 | + } |
| 290 | + ], |
| 291 | + "metadata": { |
| 292 | + "kernelspec": { |
| 293 | + "display_name": "Python 3", |
| 294 | + "language": "python", |
| 295 | + "name": "python3" |
| 296 | + }, |
| 297 | + "language_info": { |
| 298 | + "codemirror_mode": { |
| 299 | + "name": "ipython", |
| 300 | + "version": 3 |
| 301 | + }, |
| 302 | + "file_extension": ".py", |
| 303 | + "mimetype": "text/x-python", |
| 304 | + "name": "python", |
| 305 | + "nbconvert_exporter": "python", |
| 306 | + "pygments_lexer": "ipython3", |
| 307 | + "version": "3.6.5" |
| 308 | + } |
| 309 | + }, |
| 310 | + "nbformat": 4, |
| 311 | + "nbformat_minor": 4 |
| 312 | +} |
0 commit comments