|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 21, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "import pprint\n", |
| 11 | + "import sys\n", |
| 12 | + "if \"../\" not in sys.path:\n", |
| 13 | + " sys.path.append(\"../\") \n", |
| 14 | + "from lib.envs.gridworld import GridworldEnv" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 22, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "pp = pprint.PrettyPrinter(indent=2)\n", |
| 24 | + "env = GridworldEnv()" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 23, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "def value_iteration(env, theta=0.0001, discount_factor=1.0):\n", |
| 34 | + " \"\"\"\n", |
| 35 | + " Value Iteration Algorithm.\n", |
| 36 | + " \n", |
| 37 | + " Args:\n", |
| 38 | + " env: OpenAI env. env.P represents the transition probabilities of the environment.\n", |
| 39 | + " env.P[s][a] is a list of transition tuples (prob, next_state, reward, done).\n", |
| 40 | + " env.nS is a number of states in the environment. \n", |
| 41 | + " env.nA is a number of actions in the environment.\n", |
| 42 | + " theta: We stop evaluation once our value function change is less than theta for all states.\n", |
| 43 | + " discount_factor: Gamma discount factor.\n", |
| 44 | + " \n", |
| 45 | + " Returns:\n", |
| 46 | + " A tuple (policy, V) of the optimal policy and the optimal value function. \n", |
| 47 | + " \"\"\"\n", |
| 48 | + " \n", |
| 49 | + " #Initializing Values and policy.\n", |
| 50 | + " V = np.zeros(env.nS)\n", |
| 51 | + " policy = np.zeros([env.nS, env.nA])\n", |
| 52 | + " \n", |
| 53 | + " # Implement!\n", |
| 54 | + " while True:\n", |
| 55 | + " delta = 0\n", |
| 56 | + " \n", |
| 57 | + " #Going through all of the states, one by one.\n", |
| 58 | + " for s in range(env.nS):\n", |
| 59 | + " \n", |
| 60 | + "\n", |
| 61 | + " v = 0\n", |
| 62 | + " expected_values = np.zeros(env.nA)\n", |
| 63 | + " #For updating the value, we do one step-look-ahead \n", |
| 64 | + " for a in range(env.nA):\n", |
| 65 | + " #We keep an array of expected returns from all of the actions possible \n", |
| 66 | + " for prob, next_state, reward, done in env.P[s][a]:\n", |
| 67 | + " expected_values[a] += prob*(reward+discount_factor*V[next_state])\n", |
| 68 | + " \n", |
| 69 | + " #Choosing value as the max of all the possible returns we can get from the actions possible \n", |
| 70 | + " v = np.max(expected_values) \n", |
| 71 | + " delta = max(delta, np.abs(v - V[s]))\n", |
| 72 | + " V[s] = v\n", |
| 73 | + " if delta < theta:\n", |
| 74 | + " break\n", |
| 75 | + " #for policy, just act greedily w.r.t. this value function.\n", |
| 76 | + " for s in range(env.nS):\n", |
| 77 | + " #To act greeddily, we do one step-look-ahead, again.\n", |
| 78 | + " expected_values = np.zeros(env.nA)\n", |
| 79 | + " for a in range(env.nA):\n", |
| 80 | + " #We keep an array of expected returns from all of the actions possible \n", |
| 81 | + " for prob, next_state, reward, done in env.P[s][a]:\n", |
| 82 | + " expected_values[a] += prob*(reward+discount_factor*V[next_state])\n", |
| 83 | + " #Creating new policy as the action for each state that maximizes the expected return \n", |
| 84 | + " new_action = np.argmax(expected_values)\n", |
| 85 | + " #Updating the old policy\n", |
| 86 | + " policy[s] = np.eye(env.nA)[new_action]\n", |
| 87 | + " return policy, V" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 24, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [ |
| 95 | + { |
| 96 | + "name": "stdout", |
| 97 | + "output_type": "stream", |
| 98 | + "text": [ |
| 99 | + "Policy Probability Distribution:\n", |
| 100 | + "[[1. 0. 0. 0.]\n", |
| 101 | + " [0. 0. 0. 1.]\n", |
| 102 | + " [0. 0. 0. 1.]\n", |
| 103 | + " [0. 0. 1. 0.]\n", |
| 104 | + " [1. 0. 0. 0.]\n", |
| 105 | + " [1. 0. 0. 0.]\n", |
| 106 | + " [1. 0. 0. 0.]\n", |
| 107 | + " [0. 0. 1. 0.]\n", |
| 108 | + " [1. 0. 0. 0.]\n", |
| 109 | + " [1. 0. 0. 0.]\n", |
| 110 | + " [0. 1. 0. 0.]\n", |
| 111 | + " [0. 0. 1. 0.]\n", |
| 112 | + " [1. 0. 0. 0.]\n", |
| 113 | + " [0. 1. 0. 0.]\n", |
| 114 | + " [0. 1. 0. 0.]\n", |
| 115 | + " [1. 0. 0. 0.]]\n", |
| 116 | + "\n", |
| 117 | + "Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):\n", |
| 118 | + "[[0 3 3 2]\n", |
| 119 | + " [0 0 0 2]\n", |
| 120 | + " [0 0 1 2]\n", |
| 121 | + " [0 1 1 0]]\n", |
| 122 | + "\n", |
| 123 | + "Value Function:\n", |
| 124 | + "[ 0. -1. -2. -3. -1. -2. -3. -2. -2. -3. -2. -1. -3. -2. -1. 0.]\n", |
| 125 | + "\n", |
| 126 | + "Reshaped Grid Value Function:\n", |
| 127 | + "[[ 0. -1. -2. -3.]\n", |
| 128 | + " [-1. -2. -3. -2.]\n", |
| 129 | + " [-2. -3. -2. -1.]\n", |
| 130 | + " [-3. -2. -1. 0.]]\n", |
| 131 | + "\n" |
| 132 | + ] |
| 133 | + } |
| 134 | + ], |
| 135 | + "source": [ |
| 136 | + "policy, v = value_iteration(env)\n", |
| 137 | + "\n", |
| 138 | + "print(\"Policy Probability Distribution:\")\n", |
| 139 | + "print(policy)\n", |
| 140 | + "print(\"\")\n", |
| 141 | + "\n", |
| 142 | + "print(\"Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):\")\n", |
| 143 | + "print(np.reshape(np.argmax(policy, axis=1), env.shape))\n", |
| 144 | + "print(\"\")\n", |
| 145 | + "\n", |
| 146 | + "print(\"Value Function:\")\n", |
| 147 | + "print(v)\n", |
| 148 | + "print(\"\")\n", |
| 149 | + "\n", |
| 150 | + "print(\"Reshaped Grid Value Function:\")\n", |
| 151 | + "print(v.reshape(env.shape))\n", |
| 152 | + "print(\"\")" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 26, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "name": "stdout", |
| 162 | + "output_type": "stream", |
| 163 | + "text": [ |
| 164 | + "816 µs ± 59.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" |
| 165 | + ] |
| 166 | + } |
| 167 | + ], |
| 168 | + "source": [ |
| 169 | + "%timeit value_iteration(env)" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "markdown", |
| 174 | + "metadata": {}, |
| 175 | + "source": [ |
| 176 | + "As you can see, the convergence of the Value Iteration Algorithm is order times better than Policy Iteration." |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": 25, |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "# Test the value function\n", |
| 186 | + "expected_v = np.array([ 0, -1, -2, -3, -1, -2, -3, -2, -2, -3, -2, -1, -3, -2, -1, 0])\n", |
| 187 | + "np.testing.assert_array_almost_equal(v, expected_v, decimal=2)" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [] |
| 196 | + } |
| 197 | + ], |
| 198 | + "metadata": { |
| 199 | + "kernelspec": { |
| 200 | + "display_name": "Python 3", |
| 201 | + "language": "python", |
| 202 | + "name": "python3" |
| 203 | + }, |
| 204 | + "language_info": { |
| 205 | + "codemirror_mode": { |
| 206 | + "name": "ipython", |
| 207 | + "version": 3 |
| 208 | + }, |
| 209 | + "file_extension": ".py", |
| 210 | + "mimetype": "text/x-python", |
| 211 | + "name": "python", |
| 212 | + "nbconvert_exporter": "python", |
| 213 | + "pygments_lexer": "ipython3", |
| 214 | + "version": "3.6.5" |
| 215 | + } |
| 216 | + }, |
| 217 | + "nbformat": 4, |
| 218 | + "nbformat_minor": 4 |
| 219 | +} |
0 commit comments