Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions CTRAIN/data_loaders/data_loaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def load_mnist(batch_size=64, normalise=True, train_transforms=[], val_split=Tru
test_dataset = datasets.MNIST(root=data_root, train=False, transform=test_transform)
if val_split:
train_dataset, val_dataset = random_split(train_dataset, [0.8, 0.2])
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2)


train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
Expand Down Expand Up @@ -137,7 +137,7 @@ def load_cifar10(batch_size=64, normalise=True, train_transforms=[transforms.Ran
test_dataset = datasets.CIFAR10(root=data_root, train=False, transform=test_transform, download=True)
if val_split:
train_dataset, val_dataset = random_split(train_dataset, [0.8, 0.2])
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
val_loader.mean, val_loader.std = mean, std


Expand Down Expand Up @@ -229,7 +229,7 @@ def load_gtsrb(batch_size=64, normalise=True, train_transforms=[transforms.Rando
train_dataset = Subset(train_dataset_ori, train_ids)
val_dataset = Subset(train_dataset_ori, val_ids)

val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
val_loader.mean, val_loader.std = mean, std

else:
Expand Down Expand Up @@ -371,7 +371,7 @@ def load_tinyimagenet(batch_size=64, normalise=True, train_transforms=[transform
test_dataset = datasets.ImageFolder(root=data_root + '/tiny-imagenet-200/val/images', transform=test_transform)
if val_split:
train_dataset, val_dataset = random_split(train_dataset, [0.8, 0.2])
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
val_loader.mean, val_loader.std = mean, std


Expand Down
11 changes: 7 additions & 4 deletions CTRAIN/eval/eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -320,15 +320,18 @@ def eval_adaptive(model, eps, data_loader, n_classes=10, test_samples=np.inf, de
certified = torch.tensor([], device=device)
total_images = 0

ibp_data_loader = DataLoader(data_loader.dataset, batch_size=data_loader.batch_size, shuffle=False)
ibp_data_loader.max, ibp_data_loader.min, ibp_data_loader.std = data_loader.max, data_loader.min, data_loader.std

crown_data_loader = DataLoader(data_loader.dataset, batch_size=1, shuffle=False)
crown_data_loader.max, crown_data_loader.min, crown_data_loader.std = data_loader.max, data_loader.min, data_loader.std

for batch_idx, (data, targets) in tqdm(enumerate(data_loader)):
for batch_idx, (data, targets) in tqdm(enumerate(ibp_data_loader)):
certified_idx = torch.zeros(len(data), device=device, dtype=torch.bool)

ptb = PerturbationLpNorm(eps=eps, norm=np.inf, x_L=torch.clamp(data - eps, data_loader.min, data_loader.max).to(device), x_U=torch.clamp(data + eps, data_loader.min, data_loader.max).to(device))
ptb = PerturbationLpNorm(eps=eps, norm=np.inf, x_L=torch.clamp(data - eps, ibp_data_loader.min, ibp_data_loader.max).to(device), x_U=torch.clamp(data + eps, ibp_data_loader.min, ibp_data_loader.max).to(device))
data, targets = data.to(device), targets.to(device)
if batch_idx * data_loader.batch_size >= test_samples:
if batch_idx * ibp_data_loader.batch_size >= test_samples:
continue

total_images += len(targets)
Expand All @@ -346,7 +349,7 @@ def eval_adaptive(model, eps, data_loader, n_classes=10, test_samples=np.inf, de

data = data.to('cpu')
certified_idx = certified_idx.to("cpu")
ptb = PerturbationLpNorm(eps=eps, norm=np.inf, x_L=torch.clamp(data[~certified_idx] - eps, data_loader.min, data_loader.max).to(device), x_U=torch.clamp(data[~certified_idx] + eps, data_loader.min, data_loader.max).to(device))
ptb = PerturbationLpNorm(eps=eps, norm=np.inf, x_L=torch.clamp(data[~certified_idx] - eps, ibp_data_loader.min, ibp_data_loader.max).to(device), x_U=torch.clamp(data[~certified_idx] + eps, ibp_data_loader.min, ibp_data_loader.max).to(device))
data = data.to(device)
certified_idx = certified_idx.to(device)

Expand Down