forked from Clouditera/SecGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
199 lines (171 loc) · 6.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os.path
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AdamW, AutoModelForCausalLM
from dataset import pretrain, sft
from peft import PeftModel, LoraConfig, TaskType, get_peft_model
import transformers
import matplotlib.pyplot as plt
# 最大token长度
max_position_embeddings = 2048
# batch size大小
batch_size = 4
# 梯度累积
accumulation_steps = 8
# 训练多少个epoch
num_train_epochs = 10
# 每隔多少步保存一次模型
save_steps = 400
# 每隔多少步打印一次日志
logging_steps = 50
# 学习率
lr = 1e-4
# 预训练地址
pre_train_path = "models/Baichuan-13B-Base"
# 训练数据json地址
dataset_paper = "w8ay/secgpt"
# 训练方式
train_option = "pretrain" # pretrain or sft
# lora
use_lora = True
pre_lora_train_path = "" # 如果要继续上一个lora训练,这里填上上一个lora训练的地址
lora_rank = 8
lora_alpha = 32
global_pic = {
"step": [],
"loss": []
}
global_step = 0
def save_loss_pic():
x = global_pic["step"]
k1 = global_pic["loss"]
# print(x,k1)
plt.plot(x, k1, 'o-', color='b', label="loss") # s-:方形
plt.xlabel("step") # 横坐标名字
plt.ylabel("loss") # 纵坐标名字
# plt.legend(loc = "best")
# plt.show()
plt.savefig('foo.png')
def prepare_data():
# 预训练
if train_option == "pretrain":
data_engine = pretrain.DataEngine(
tokenizer, batch_size, max_position_embeddings,
data_path=dataset_paper)
else:
# sft训练
data_engine = sft.DataEngine(tokenizer, batch_size, max_position_embeddings,
data_path=dataset_paper)
return data_engine
def find_all_linear_names(peft_model):
"""Find all linear layer names in the model. reference from qlora paper."""
cls = torch.nn.Linear
lora_module_names = set()
for name, module in peft_model.named_modules():
if isinstance(module, cls):
# last layer is not add to lora_module_names
if 'lm_head' in name:
continue
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
return sorted(lora_module_names)
def prepare_model():
# 加载模型
config = transformers.AutoConfig.from_pretrained(
pre_train_path,
trust_remote_code=True,
)
config.use_cache = False
model = AutoModelForCausalLM.from_pretrained(pre_train_path, trust_remote_code=True, device_map="auto")
print("模型加载完毕")
# 加载lora模型
if use_lora:
if pre_lora_train_path:
model = PeftModel.from_pretrained(model, pre_lora_train_path, is_trainable=True)
for name, param in model.named_parameters():
if 'lora' in name or 'Lora' in name:
param.requires_grad = True
else:
trainable = find_all_linear_names(model)
print(trainable)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=0.1,
target_modules=trainable
)
model = get_peft_model(model, peft_config)
print("lora加载完毕")
model.print_trainable_parameters() # 打印可训练参数
else:
print_model_parameters(model)
model.supports_gradient_checkpointing = True # 节约cuda
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
return model
def save_model(model, path):
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(path)
# 打印模型参数
def print_model_parameters(model):
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'Total trainable parameters: {total_params / 1000000}M total:{total_params}')
def train(model, epoch):
global global_pic, global_step
data_engine = prepare_data()
model.train()
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
length = len(data_engine)
pbar = tqdm(range(length))
step = 0
running_loss = 0
epoch_loss = 0
for item in data_engine.get_data():
input_ids = item["input_ids"].cuda()
labels = item["labels"].cuda()
loss = model.forward(input_ids=input_ids, labels=labels)[0]
show_loss = loss.mean().item()
running_loss += show_loss
epoch_loss += show_loss
loss = loss.mean() / accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model_parameters, 1.0)
# update model parameters
if step > 0 and step % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
if step != 0 and step % logging_steps == 0:
print(f"step: {step}, loss: {running_loss / logging_steps}")
global_pic["step"].append(global_step)
global_pic["loss"].append(running_loss / logging_steps)
running_loss = 0
save_loss_pic()
if step != 0 and step % save_steps == 0:
save_model(model, f"{output_dir}/epoch-{epoch}-step-{step}")
pbar.set_postfix({
"step": step,
"loss": show_loss
})
pbar.update(1)
step += 1
global_step += 1
print(f"epoch:{epoch} loss:{epoch_loss / step}")
global_pic["step"].append(global_step)
global_pic["loss"].append(epoch_loss / step)
save_loss_pic()
pbar.close()
save_model(model_engine, f"{output_dir}/secgpt-base-epoch-{i + 1}")
if __name__ == "__main__":
# output
output_dir = "output"
tokenizer = AutoTokenizer.from_pretrained(pre_train_path, trust_remote_code=True)
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
data_engine = prepare_data()
model_engine = prepare_model()
print_model_parameters(model_engine)
optimizer = AdamW(model_engine.parameters(), lr=lr, correct_bias=True)
for i in range(num_train_epochs):
train(model_engine, i)