You can install Mage using Docker, pip
, or conda
.
-
Create new project and launch tool
docker run -it -p 6789:6789 -v $(pwd):/home/src mageai/mageai \ mage start [project_name]
Windows
If you are running Mage in Docker on Windows OS,
$(pwd)
won’t work. Instead, use the following command:docker run -it -p 6789:6789 -v "C:\Some Path\To Your Current Directory":/home/src mageai/mageai \ mage start [project_name]
-
Open http://localhost:6789 in your browser and build a pipeline.
-
Run pipeline after building it in the tool
docker run -it -p 6789:6789 -v $(pwd):/home/src mageai/mageai \ mage run [project_name] [pipeline]
If you want to create a different project with a different name, run the following:
docker run -it -p 6789:6789 -v $(pwd):/home/src mageai/mageai \
mage init [project_name]
Mage uses SQLite as the default database engine. To use PostgreSQL as the database engine, you'll need to run your Docker container slightly differently:
-
Create Docker network
docker network create mage-app
-
Start PostgreSQL Docker container in a separate window
docker run --network mage-app --network-alias postgres_db \ -it -p 5432:5432 -v pgdata:/var/lib/postgresql/data \ -e POSTGRES_USER=<username> -e POSTGRES_PASSWORD=<password> \ -e POSTGRES_DB=<database> -e PG_DATA=/var/lib/postgresql/data/pgdata \ postgres:13-alpine3.17 postgres
-
Launch Mage with
MAGE_DATABASE_CONNECTION_URL
environment variabledocker run --network mage-app -it -p 6789:6789 -v $(pwd):/home/src \ -e MAGE_DATABASE_CONNECTION_URL=postgresql+psycopg2://<username>:<password>@postgres_db:5432/<database> \ mageai/mageai \ mage start another_repo
Using pip
or conda
-
Install Mage
pip install mage-ai
or
conda install -c conda-forge mage-ai
If you run into errors, see the errors section below.
-
Create new project and launch tool
mage start [project_name]
-
Open http://localhost:6789 in your browser and build a pipeline.
-
Run pipeline after building it in the tool
mage run [project_name] [pipeline]
If you want to create a different project with a different name, run the following:
mage init [project_name]
docker pull mageai/mageai:latest
pip install -U mage-ai
If you’re running Mage using pip
or conda
, your local machine’s environment variables
are accessible within the running Mage app.
If you’re running Mage using Docker, you must add the following command line flags:
-e SOME_VARIABLE_NAME_1=secret_value_1 -e SOME_VARIABLE_NAME_2=secret_value_2
The command to run Mage using Docker could look like this:
docker run -it -p 6789:6789 -v $(pwd):/home/src mageai/mageai \
-e SOME_VARIABLE_NAME_1=secret_value_1 -e SOME_VARIABLE_NAME_2=secret_value_2 \
mage start demo_project
Mage also has the following extras:
- spark: to use Spark in your Mage pipeline
- bigquery: to connect to BigQuery for data import or export
- hdf5: to process HDF5 file format
- postgres: to connect to PostgreSQL for data import or export
- redshift: to connect to Redshift for data import or export
- s3: to connect to S3 for data import or export
- snowflake: to connect to Snowflake for data import or export
- all: to install all of the above to use all functionalities
Example:
pip install "mage-ai[spark]"
You may need to install development libraries for MIT Kerberos to use some Mage features.
On Ubuntu, this can be installed as:
apt install libkrb5-dev
To setup a development environment for editing source code, please check out this document.
docker build -t mage/dangerous .
Install mage-ai
library from your branch:
$ pip3 install git+https://github.com/mage-ai/mage-ai.git@branch_name#egg=mage-ai
Build the front-end code:
$ cd mage_ai/frontend
$ yarn install
$ yarn export_prod
$ ./scripts/server/test.sh
To check proper types in TypeScript, run:
$ ./scripts/test.sh