File tree 4 files changed +11
-13
lines changed
4 files changed +11
-13
lines changed Original file line number Diff line number Diff line change 68
68
],
69
69
"metadata" : {
70
70
"kernelspec" : {
71
- "display_name" : " Python 3 " ,
71
+ "display_name" : " Python [default] " ,
72
72
"language" : " python" ,
73
73
"name" : " python3"
74
74
},
82
82
"name" : " python" ,
83
83
"nbconvert_exporter" : " python" ,
84
84
"pygments_lexer" : " ipython3" ,
85
- "version" : " 3.5.1 "
85
+ "version" : " 3.5.2 "
86
86
}
87
87
},
88
88
"nbformat" : 4 ,
Original file line number Diff line number Diff line change 89
89
],
90
90
"metadata" : {
91
91
"kernelspec" : {
92
- "display_name" : " Python 3 " ,
92
+ "display_name" : " Python [default] " ,
93
93
"language" : " python" ,
94
94
"name" : " python3"
95
95
},
103
103
"name" : " python" ,
104
104
"nbconvert_exporter" : " python" ,
105
105
"pygments_lexer" : " ipython3" ,
106
- "version" : " 3.5.1 "
106
+ "version" : " 3.5.2 "
107
107
}
108
108
},
109
109
"nbformat" : 4 ,
Original file line number Diff line number Diff line change 16
16
" \n " ,
17
17
" 对置换矩阵$P$,有$P^TP = I$\n " ,
18
18
" \n " ,
19
- " 即$P^T = P^{-1}"
20
- " \n " ,
19
+ " 即$P^T = P^{-1}\n " ,
21
20
" ## 转置矩阵(Transpose Matrix)\n " ,
22
21
" \n " ,
23
22
" $(A^T)_{ij} = (A)_{ji}$\n " ,
37
36
" \n " ,
38
37
" 所有向量空间都必须包含原点(Origin);\n " ,
39
38
" \n " ,
40
- " 向量空间中任意向量的数乘、求和运算得到的向量也在该空间中。"
41
- " \n " ,
39
+ " 向量空间中任意向量的数乘、求和运算得到的向量也在该空间中。\n " ,
42
40
" 即向量空间要满足加法封闭和数乘封闭。"
43
41
]
44
42
}
45
43
],
46
44
"metadata" : {
47
45
"kernelspec" : {
48
- "display_name" : " Python 3 " ,
46
+ "display_name" : " Python [default] " ,
49
47
"language" : " python" ,
50
48
"name" : " python3"
51
49
},
59
57
"name" : " python" ,
60
58
"nbconvert_exporter" : " python" ,
61
59
"pygments_lexer" : " ipython3" ,
62
- "version" : " 3.5.1 "
60
+ "version" : " 3.5.2 "
63
61
}
64
62
},
65
63
"nbformat" : 4 ,
Original file line number Diff line number Diff line change 41
41
" \n " ,
42
42
" 通常,给自由列变量赋值,去求主列变量的值。如,令$x_2=1, x_4=0$求得特解\n " ,
43
43
" $x=c_1\\ begin{bmatrix}-2\\\\ 1\\\\ 0\\\\ 0\\\\\\ end{bmatrix}$;\n " ,
44
- " 再另 $x_2=0, x_4=1$求得特解\n " ,
44
+ " 再令 $x_2=0, x_4=1$求得特解\n " ,
45
45
" $x=c_2\\ begin{bmatrix}2\\\\ 0\\\\ -2\\\\ 1\\\\\\ end{bmatrix}$。\n " ,
46
46
" \n " ,
47
47
" 该例还能进一步简化,即将$U$矩阵化简为$R$矩阵(Reduced row echelon form),即简化行阶梯形式。\n " ,
159
159
],
160
160
"metadata" : {
161
161
"kernelspec" : {
162
- "display_name" : " Python 3 " ,
162
+ "display_name" : " Python [default] " ,
163
163
"language" : " python" ,
164
164
"name" : " python3"
165
165
},
173
173
"name" : " python" ,
174
174
"nbconvert_exporter" : " python" ,
175
175
"pygments_lexer" : " ipython3" ,
176
- "version" : " 3.5.1 "
176
+ "version" : " 3.5.2 "
177
177
}
178
178
},
179
179
"nbformat" : 4 ,
You can’t perform that action at this time.
0 commit comments