-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTLDR.py
158 lines (130 loc) · 5.05 KB
/
TLDR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding: cp1254 -*-
from cv2 import *
import numpy as np
from matplotlib import pyplot as plt
import math
import time
import glob
import os
import sys
import gc
from sklearn.externals import joblib
from threading import Thread
from Queue import Queue
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import LinearSVC
from sklearn.externals import joblib
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
from imutils import paths
import argparse
import imutils
##resimler = "C:\\Users\\ZÝYA\\Desktop\\Datasets\\Dataset-3"
datas = []
circleDrawShow = False
blurShow = False
edgeShow = False
hsvShow = False
segShow = False
morfoShow = False
def extract_color_histogram(image, bins=(8, 8, 8)):
hsv = cvtColor(image, COLOR_BGR2HSV)
hist = calcHist([hsv], [0, 1, 2], None, bins,
[0, 180, 0, 256, 0, 256])
if imutils.is_cv2():
hist = normalize(hist)
else:
normalize(hist, hist)
return hist.flatten()
def colorSeg(hsv_image):
lowerAndUpperArray = np.matrix([[170,128,128],[180,255,255],[1,128,128],[30,255,255],[40,128,100],[95,255,255],[20,128,128],[30,255,255]])
red1_mask = inRange(hsv_image,lowerAndUpperArray[0,:],lowerAndUpperArray[1,:])
red2_mask = inRange(hsv_image,lowerAndUpperArray[2,:],lowerAndUpperArray[3,:])
green_mask = inRange(hsv_image,lowerAndUpperArray[4,:],lowerAndUpperArray[5,:])
yellow_mask = inRange(hsv_image,lowerAndUpperArray[6,:],lowerAndUpperArray[7,:])
binaryImage = red1_mask+red2_mask+green_mask+yellow_mask
return binaryImage
def imageBlur(crop_image):
median = GaussianBlur(crop_image,(9,9),0)
return median
def imageMorp(binaryImage):
kernel = getStructuringElement(MORPH_ELLIPSE,(5,5))
dilation = dilate(binaryImage,kernel,iterations=1)
return dilation
def findCircleDraw(canny_image,image,model):
redCounter = 0
yellowCounter = 0
greenCounter = 0
circles = HoughCircles(canny_image,HOUGH_GRADIENT,2,10,param1=50,param2=20,minRadius=5,maxRadius=30)
drawCircleImage = image
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
if circleDrawShow == True:
circle(image,(i[0],i[1]),i[2],(0,255,0),2)
#rectangle(drawCircleImage,(i[0]-i[2],i[1]-i[2]),(i[0]+i[2],i[1]+i[2]),(255,0,0),1)
im = drawCircleImage[(i[1]-i[2]):(i[1]+i[2]),(i[0]-i[2]):(i[0]+i[2])]
x,y,z = im.shape
if x==0 or y==0:
continue
else:
imre_hist = extract_color_histogram(im)
datas.append(imre_hist)
deger = model.predict(datas)
if deger == 0:
greenCounter = greenCounter+1
#circle(image,(450,481),20,(0,255,0),-1)
elif deger == 1:
redCounter = redCounter+1
#circle(image,(450,481),20,(0,0,255),-1)
elif deger == 2:
yellowCounter = yellowCounter+1
#circle(image,(450,481),20,(0,255,255),-1)
else:
print "Yok :D"
datas.pop()
if greenCounter!=0:
circle(image,(450,481),20,(0,255,0),-1)
if yellowCounter!=0:
circle(image,(450,481),20,(0,255,255),-1)
if redCounter != 0:
if yellowCounter != 0:
circle(image,(450,481),20,(0,255,255),-1)
else:
circle(image,(450,481),20,(0,0,255),-1)
return drawCircleImage
if __name__ == "__main__":
gc.enable()
basla = time.time()
videoName = raw_input("Video Ýsmini Giriniz : ")
cap = VideoCapture(str(videoName)+".avi")
while(True):
ret, image = cap.read()
if ret==True:
crop_image = image[0:(image.shape[0]/2),0:(image.shape[1])]
median = imageBlur(crop_image)
hsv_image = cvtColor(median,COLOR_BGR2HSV)
binaryImage = colorSeg(hsv_image)
dilation = imageMorp(binaryImage)
canny = Canny(dilation,75,150)
model = joblib.load("D:\\svm1.model")
drawCircleImage = findCircleDraw(canny,image,model)
if edgeShow == True:
imshow("edge",canny)
if blurShow == True:
imshow("blur",median)
if hsvShow == True:
imshow("hsv",hsv_image)
if segShow == True:
imshow("seg",binaryImage)
if morfoShow == True:
imshow("morfo",dilation)
imshow("image",image)
if waitKey(1) & 0xFF == ord('q'):
break
else:
print "Bitti Kardeþþ :D"
break
cap.release()
destroyAllWindows()
print "%s saniye sürdü" % (time.time() - basla)