You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: _sources/user_guide/fit_predict.rst.txt
+1-1
Original file line number
Diff line number
Diff line change
@@ -58,7 +58,7 @@ The default quantiles can be overwritten at prediction time by specifying a valu
58
58
>>> y_pred.ndim ==1
59
59
True
60
60
61
-
The output of the `predict` method is an array with one column for each specified quantile or a single column if no quantiles are specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered)::
61
+
The output of the `predict` method is an array with one column for each specified quantile or a single column if an individual quantile is specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered)::
<dt><strong>y_pred</strong><spanclass="classifier">array of shape (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <codeclass="docutils literal notranslate"><spanclass="pre">E(Y</span><spanclass="pre">|</span><spanclass="pre">X)</span></code>. Else, for
925
+
<dt><strong>y_pred</strong><spanclass="classifier">array of shape (n_samples,) or (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <codeclass="docutils literal notranslate"><spanclass="pre">E(Y</span><spanclass="pre">|</span><spanclass="pre">X)</span></code>. Else, for
926
926
all quantiles, return <codeclass="docutils literal notranslate"><spanclass="pre">y</span></code> at <codeclass="docutils literal notranslate"><spanclass="pre">q</span></code> for which <codeclass="docutils literal notranslate"><spanclass="pre">F(Y=y|x)</span><spanclass="pre">=</span><spanclass="pre">q</span></code>,
927
927
where <codeclass="docutils literal notranslate"><spanclass="pre">q</span></code> is the quantile.</p>
<codeclass="docutils literal notranslate"><spanclass="pre">dtype=np.float32</span></code>. If a sparse matrix is provided, it will be
1009
1009
converted into a sparse <codeclass="docutils literal notranslate"><spanclass="pre">csr_matrix</span></code>.</p>
1010
1010
</dd>
1011
-
<dt><strong>y</strong><spanclass="classifier">array-like of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
1011
+
<dt><strong>y</strong><spanclass="classifier">array-like of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
1012
1012
</dd>
1013
1013
<dt><strong>kind</strong><spanclass="classifier">{“rank”, “weak”, “strict”, “mean”}, default=”rank”</span></dt><dd><p>Specifies the interpretation of the resulting score:</p>
<dt><strong>y_ranks</strong><spanclass="classifier">array of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
1035
+
<dt><strong>y_ranks</strong><spanclass="classifier">array of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
<dt><strong>y_pred</strong><spanclass="classifier">array of shape (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <codeclass="docutils literal notranslate"><spanclass="pre">E(Y</span><spanclass="pre">|</span><spanclass="pre">X)</span></code>. Else, for
936
+
<dt><strong>y_pred</strong><spanclass="classifier">array of shape (n_samples,) or (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <codeclass="docutils literal notranslate"><spanclass="pre">E(Y</span><spanclass="pre">|</span><spanclass="pre">X)</span></code>. Else, for
937
937
all quantiles, return <codeclass="docutils literal notranslate"><spanclass="pre">y</span></code> at <codeclass="docutils literal notranslate"><spanclass="pre">q</span></code> for which <codeclass="docutils literal notranslate"><spanclass="pre">F(Y=y|x)</span><spanclass="pre">=</span><spanclass="pre">q</span></code>,
938
938
where <codeclass="docutils literal notranslate"><spanclass="pre">q</span></code> is the quantile.</p>
<codeclass="docutils literal notranslate"><spanclass="pre">dtype=np.float32</span></code>. If a sparse matrix is provided, it will be
1020
1020
converted into a sparse <codeclass="docutils literal notranslate"><spanclass="pre">csr_matrix</span></code>.</p>
1021
1021
</dd>
1022
-
<dt><strong>y</strong><spanclass="classifier">array-like of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
1022
+
<dt><strong>y</strong><spanclass="classifier">array-like of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
1023
1023
</dd>
1024
1024
<dt><strong>kind</strong><spanclass="classifier">{“rank”, “weak”, “strict”, “mean”}, default=”rank”</span></dt><dd><p>Specifies the interpretation of the resulting score:</p>
<dt><strong>y_ranks</strong><spanclass="classifier">array of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
1046
+
<dt><strong>y_ranks</strong><spanclass="classifier">array of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
<p>The output of the <codeclass="docutils literal notranslate"><spanclass="pre">predict</span></code> method is an array with one column for each specified quantile or a single column if no quantiles are specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered):</p>
485
+
<p>The output of the <codeclass="docutils literal notranslate"><spanclass="pre">predict</span></code> method is an array with one column for each specified quantile or a single column if an individual quantile is specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered):</p>
0 commit comments