Skip to content

Commit 88a3879

Browse files
committed
deploy: 72f8315
1 parent 58ab088 commit 88a3879

5 files changed

+9
-9
lines changed

_sources/user_guide/fit_predict.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ The default quantiles can be overwritten at prediction time by specifying a valu
5858
>>> y_pred.ndim == 1
5959
True
6060

61-
The output of the `predict` method is an array with one column for each specified quantile or a single column if no quantiles are specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered)::
61+
The output of the `predict` method is an array with one column for each specified quantile or a single column if an individual quantile is specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered)::
6262

6363
>>> y_pred = qrf.predict(X_test, quantiles=[0.5, 0.25, 0.75])
6464
>>> bool((y_pred[:, 0] >= y_pred[:, 1]).all())

generated/quantile_forest.ExtraTreesQuantileRegressor.html

+3-3
Original file line numberDiff line numberDiff line change
@@ -922,7 +922,7 @@ <h1>ExtraTreesQuantileRegressor<a class="headerlink" href="#extratreesquantilere
922922
</dd>
923923
<dt class="field-even">Returns<span class="colon">:</span></dt>
924924
<dd class="field-even"><dl class="simple">
925-
<dt><strong>y_pred</strong><span class="classifier">array of shape (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <code class="docutils literal notranslate"><span class="pre">E(Y</span> <span class="pre">|</span> <span class="pre">X)</span></code>. Else, for
925+
<dt><strong>y_pred</strong><span class="classifier">array of shape (n_samples,) or (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <code class="docutils literal notranslate"><span class="pre">E(Y</span> <span class="pre">|</span> <span class="pre">X)</span></code>. Else, for
926926
all quantiles, return <code class="docutils literal notranslate"><span class="pre">y</span></code> at <code class="docutils literal notranslate"><span class="pre">q</span></code> for which <code class="docutils literal notranslate"><span class="pre">F(Y=y|x)</span> <span class="pre">=</span> <span class="pre">q</span></code>,
927927
where <code class="docutils literal notranslate"><span class="pre">q</span></code> is the quantile.</p>
928928
</dd>
@@ -1008,7 +1008,7 @@ <h1>ExtraTreesQuantileRegressor<a class="headerlink" href="#extratreesquantilere
10081008
<code class="docutils literal notranslate"><span class="pre">dtype=np.float32</span></code>. If a sparse matrix is provided, it will be
10091009
converted into a sparse <code class="docutils literal notranslate"><span class="pre">csr_matrix</span></code>.</p>
10101010
</dd>
1011-
<dt><strong>y</strong><span class="classifier">array-like of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
1011+
<dt><strong>y</strong><span class="classifier">array-like of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
10121012
</dd>
10131013
<dt><strong>kind</strong><span class="classifier">{“rank”, “weak”, “strict”, “mean”}, default=”rank”</span></dt><dd><p>Specifies the interpretation of the resulting score:</p>
10141014
<ul class="simple">
@@ -1032,7 +1032,7 @@ <h1>ExtraTreesQuantileRegressor<a class="headerlink" href="#extratreesquantilere
10321032
</dd>
10331033
<dt class="field-even">Returns<span class="colon">:</span></dt>
10341034
<dd class="field-even"><dl class="simple">
1035-
<dt><strong>y_ranks</strong><span class="classifier">array of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
1035+
<dt><strong>y_ranks</strong><span class="classifier">array of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
10361036
</dd>
10371037
</dl>
10381038
</dd>

generated/quantile_forest.RandomForestQuantileRegressor.html

+3-3
Original file line numberDiff line numberDiff line change
@@ -933,7 +933,7 @@ <h1>RandomForestQuantileRegressor<a class="headerlink" href="#randomforestquanti
933933
</dd>
934934
<dt class="field-even">Returns<span class="colon">:</span></dt>
935935
<dd class="field-even"><dl class="simple">
936-
<dt><strong>y_pred</strong><span class="classifier">array of shape (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <code class="docutils literal notranslate"><span class="pre">E(Y</span> <span class="pre">|</span> <span class="pre">X)</span></code>. Else, for
936+
<dt><strong>y_pred</strong><span class="classifier">array of shape (n_samples,) or (n_samples, n_quantiles) or (n_samples, n_outputs, n_quantiles)</span></dt><dd><p>If quantiles is set to ‘mean’, then return <code class="docutils literal notranslate"><span class="pre">E(Y</span> <span class="pre">|</span> <span class="pre">X)</span></code>. Else, for
937937
all quantiles, return <code class="docutils literal notranslate"><span class="pre">y</span></code> at <code class="docutils literal notranslate"><span class="pre">q</span></code> for which <code class="docutils literal notranslate"><span class="pre">F(Y=y|x)</span> <span class="pre">=</span> <span class="pre">q</span></code>,
938938
where <code class="docutils literal notranslate"><span class="pre">q</span></code> is the quantile.</p>
939939
</dd>
@@ -1019,7 +1019,7 @@ <h1>RandomForestQuantileRegressor<a class="headerlink" href="#randomforestquanti
10191019
<code class="docutils literal notranslate"><span class="pre">dtype=np.float32</span></code>. If a sparse matrix is provided, it will be
10201020
converted into a sparse <code class="docutils literal notranslate"><span class="pre">csr_matrix</span></code>.</p>
10211021
</dd>
1022-
<dt><strong>y</strong><span class="classifier">array-like of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
1022+
<dt><strong>y</strong><span class="classifier">array-like of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>The target values for which to calculate ranks.</p>
10231023
</dd>
10241024
<dt><strong>kind</strong><span class="classifier">{“rank”, “weak”, “strict”, “mean”}, default=”rank”</span></dt><dd><p>Specifies the interpretation of the resulting score:</p>
10251025
<ul class="simple">
@@ -1043,7 +1043,7 @@ <h1>RandomForestQuantileRegressor<a class="headerlink" href="#randomforestquanti
10431043
</dd>
10441044
<dt class="field-even">Returns<span class="colon">:</span></dt>
10451045
<dd class="field-even"><dl class="simple">
1046-
<dt><strong>y_ranks</strong><span class="classifier">array of shape (n_samples) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
1046+
<dt><strong>y_ranks</strong><span class="classifier">array of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>Quantile ranks in range [0, 1].</p>
10471047
</dd>
10481048
</dl>
10491049
</dd>

searchindex.js

+1-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

user_guide/fit_predict.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -482,7 +482,7 @@ <h2>Making Predictions<a class="headerlink" href="#making-predictions" title="Li
482482
<span class="go">True</span>
483483
</pre></div>
484484
</div>
485-
<p>The output of the <code class="docutils literal notranslate"><span class="pre">predict</span></code> method is an array with one column for each specified quantile or a single column if no quantiles are specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered):</p>
485+
<p>The output of the <code class="docutils literal notranslate"><span class="pre">predict</span></code> method is an array with one column for each specified quantile or a single column if an individual quantile is specified. The order of the output columns corresponds to the order of the quantiles, which can be specified in any order (i.e., they do not need to be monotonically ordered):</p>
486486
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">y_pred</span> <span class="o">=</span> <span class="n">qrf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">quantiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">])</span>
487487
<span class="gp">&gt;&gt;&gt; </span><span class="nb">bool</span><span class="p">((</span><span class="n">y_pred</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">&gt;=</span> <span class="n">y_pred</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">])</span><span class="o">.</span><span class="n">all</span><span class="p">())</span>
488488
<span class="go">True</span>

0 commit comments

Comments
 (0)