-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
152 lines (124 loc) · 4.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from argparse import Namespace
import argparse
from pathlib import Path
import torch
import os.path as osp
from utils.utils import get_model_folder, get_best_epoch
from utils.argparse_utils import (
parse_data_settings,
parse_eval_settings,
parse_model_settings,
parse_training_settings,
)
from utils.initialize import (
initialize_dataloader,
initialize_models,
initialize_optimizers,
initialize_test_dataloader,
)
from utils.permutation import PermutationTest
from utils.train import train_loop
import logging
logging.basicConfig(level=logging.INFO)
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=UserWarning)
def main(args):
logging.info(f"{args=}")
if args.seed is not None and args.seed >= 0:
logging.info(f"Setting random seed to {args.seed}")
torch.manual_seed(args.seed)
# Loading data and initializing models
train_loader, valid_loader = initialize_dataloader(
paths=args.data_paths,
batch_size=args.batch_size,
vec_dims=args.vec_dims,
train_fraction=args.train_fraction,
train_set_portion=args.train_set_portion,
)
test_loader = initialize_test_dataloader(
paths=args.test_data_paths,
batch_size=args.test_batch_size,
vec_dims=args.vec_dims,
)
encoder, decoder = initialize_models(args)
logging.info(f"Latent space size: {encoder.latent_space_size}")
logging.info(
f"Compression rate: {encoder.latent_space_size / (args.vec_dims * args.num_jet_particles)}"
)
if not args.load_to_train:
import json
outpath = get_model_folder(args)
args_dir = outpath / "args_cache.json"
with open(args_dir, "w") as f:
json.dump({k: str(v) for k, v in vars(args).items()}, f)
else:
outpath = Path(args.load_path)
# in case the folder has been deleted
outpath.mkdir(parents=True, exist_ok=True)
logging.info(f"Output path: {outpath}")
logging.info("Running permutation test before training...")
permutation_test = PermutationTest(
encoder=encoder, decoder=decoder, device=args.device, dtype=args.dtype
)
perm_result = permutation_test(test_loader, verbose=False)
logging.info(f"Permutation invariance: {perm_result['invariance']}")
logging.info(f"Permutation equivariance: {perm_result['equivariance']}")
# trainings
optimizer_encoder, optimizer_decoder = initialize_optimizers(args, encoder, decoder)
# Both on gpu
if next(encoder.parameters()).is_cuda and next(encoder.parameters()).is_cuda:
logging.info("The models are initialized on GPU...")
# Both on cpu
else:
logging.info("The models are initialized on CPU...")
logging.info(f"Training over {args.num_epochs} epochs...")
"""Training"""
train_loop(
args,
train_loader,
valid_loader,
encoder,
decoder,
optimizer_encoder,
optimizer_decoder,
outpath,
args.device,
)
logging.info("Training finished!")
logging.info("Running permutation test after training...")
permutation_test = PermutationTest(
encoder=encoder, decoder=decoder, device=args.device, dtype=args.dtype
)
perm_result = permutation_test(test_loader, verbose=False)
logging.info(f"Permutation invariance: {perm_result['invariance']}")
logging.info(f"Permutation equivariance: {perm_result['equivariance']}")
logging.info("Done!")
def setup_argparse() -> Namespace:
parser = argparse.ArgumentParser(description="GNN autoencoder training options")
parser.add_argument(
'--seed', type=int, default=-1, help='Random seed for reproducibility. Default: -1 (no seed)'
)
parser = parse_data_settings(parser)
parser = parse_training_settings(parser)
parser = parse_eval_settings(parser)
parser = parse_model_settings(parser)
args = parser.parse_args()
logging.debug(f"args before updating: {args}")
if args.load_to_train and args.load_epoch < 0:
if args.load_path is None:
raise ValueError("You must specify a path to load the model from.")
args.load_epoch = get_best_epoch(args.load_path, num=args.load_epoch)
if args.load_epoch < 0:
# no model found
args.load_to_train = False
if args.patience <= 0:
import math
args.patience = math.inf
return args
if __name__ == "__main__":
import sys
torch.autograd.set_detect_anomaly(True)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
args = setup_argparse()
main(args)