forked from rurban/smhasher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvmac.cpp
1463 lines (1320 loc) · 47.3 KB
/
vmac.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* --------------------------------------------------------------------------
* VMAC and VHASH Implementation by Ted Krovetz ([email protected]) and Wei Dai.
* This implementation is hereby placed in the public domain.
* The authors offers no warranty. Use at your own risk.
* Please send bug reports to the authors.
* Last modified: 17 APR 08, 1700 PDT
* ----------------------------------------------------------------------- */
#include "vmac.h"
#include <string.h>
#include <stdio.h>
/* Enable code tuned for 64-bit registers; otherwise tuned for 32-bit */
#ifndef VMAC_ARCH_64
#if ( defined __x86_64__ ) || ( defined __ppc64__ ) || ( defined _M_X64 )
#define VMAC_ARCH_64 1
#endif
#endif
#ifdef __arm__
#define VMAC_USE_SSE2 0 // always
#else // __arm__
#ifdef VMAC_ARCH_64
#define VMAC_USE_SSE2 1 // always
#else // VMAC_ARCH_64
#define VMAC_USE_SSE2 0 // 0 or 1; further considerations should be applied
#endif // VMAC_ARCH_64
#endif // __arm__
/* Enable code tuned for Intel SSE2 instruction set */
#if ((__SSE2__ || (_M_IX86_FP >= 2)) && ( ! VMAC_ARCH_64))
#include <emmintrin.h>
#endif
#ifdef _MSC_VER
#if !defined _WIN64
#define _mmm_empty _mm_empty();
#else // _WIN64
#define _mmm_empty
#endif // _WIN64
#else // _MSC_VER
#define _mmm_empty __asm volatile ( "emms" ::: "memory" );
#endif // _MSC_VER
/* Native word reads. Update (or define via compiler) if incorrect */
#ifndef VMAC_ARCH_BIG_ENDIAN /* Assume big-endian unless on the list */
#define VMAC_ARCH_BIG_ENDIAN \
(!(__x86_64__ || __i386__ || _M_IX86 || \
_M_X64 || __ARMEL__ || __MIPSEL__))
#endif
/* ----------------------------------------------------------------------- */
/* Constants and masks */
const uint64_t p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
const uint64_t m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
const uint64_t m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
const uint64_t m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
const uint64_t mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
/* ----------------------------------------------------------------------- *
* The following routines are used in this implementation. They are
* written via macros to simulate zero-overhead call-by-reference.
* All have default implemantations for when they are not defined in an
* architecture-specific manner.
*
* MUL64: 64x64->128-bit multiplication
* PMUL64: assumes top bits cleared on inputs
* ADD128: 128x128->128-bit addition
* GET_REVERSED_64: load and byte-reverse 64-bit word
* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
#if (__GNUC__ && (__x86_64__ || __amd64__))
/* ----------------------------------------------------------------------- */
#define ADD128(rh,rl,ih,il) \
asm ("addq %3, %1 \n\t" \
"adcq %2, %0" \
: "+r"(rh),"+r"(rl) \
: "r"(ih),"r"(il) : "cc");
#define MUL64(rh,rl,i1,i2) \
asm ("mulq %3" : "=a"(rl), "=d"(rh) : "a"(i1), "r"(i2) : "cc")
#define PMUL64 MUL64
#define GET_REVERSED_64(p) \
({uint64_t x; \
asm ("bswapq %0" : "=r" (x) : "0"(*(uint64_t *)(p))); x;})
/* ----------------------------------------------------------------------- */
#elif (__GNUC__ && __i386__)
/* ----------------------------------------------------------------------- */
#define GET_REVERSED_64(p) \
({ uint64_t x; \
uint32_t *tp = (uint32_t *)(p); \
asm ("bswap %%edx\n\t" \
"bswap %%eax" \
: "=A"(x) \
: "a"(tp[1]), "d"(tp[0])); \
x; })
/* ----------------------------------------------------------------------- */
#elif (__GNUC__ && __ppc64__)
/* ----------------------------------------------------------------------- */
#define ADD128(rh,rl,ih,il) \
asm volatile ( "addc %1, %1, %3 \n\t" \
"adde %0, %0, %2" \
: "+r"(rh),"+r"(rl) \
: "r"(ih),"r"(il));
#define MUL64(rh,rl,i1,i2) \
{ uint64_t _i1 = (i1), _i2 = (i2); \
rl = _i1 * _i2; \
asm volatile ("mulhdu %0, %1, %2" : "=r" (rh) : "r" (_i1), "r" (_i2));\
}
#define PMUL64 MUL64
#define GET_REVERSED_64(p) \
({ uint32_t hi, lo, *_p = (uint32_t *)(p); \
asm volatile ("lwbrx %0, %1, %2" : "=r"(lo) : "b%"(0), "r"(_p) ); \
asm volatile ("lwbrx %0, %1, %2" : "=r"(hi) : "b%"(4), "r"(_p) ); \
((uint64_t)hi << 32) | (uint64_t)lo; } )
/* ----------------------------------------------------------------------- */
#elif (__GNUC__ && (__ppc__ || __PPC__))
/* ----------------------------------------------------------------------- */
#define GET_REVERSED_64(p) \
({ uint32_t hi, lo, *_p = (uint32_t *)(p); \
asm volatile ("lwbrx %0, %1, %2" : "=r"(lo) : "b%"(0), "r"(_p) ); \
asm volatile ("lwbrx %0, %1, %2" : "=r"(hi) : "b%"(4), "r"(_p) ); \
((uint64_t)hi << 32) | (uint64_t)lo; } )
/* ----------------------------------------------------------------------- */
#elif (__GNUC__ && (__ARMEL__ || __ARM__))
/* ----------------------------------------------------------------------- */
#define bswap32(v) \
({ uint32_t tmp,out; \
asm volatile( \
"eor %1, %2, %2, ror #16\n" \
"bic %1, %1, #0x00ff0000\n" \
"mov %0, %2, ror #8\n" \
"eor %0, %0, %1, lsr #8" \
: "=r" (out), "=&r" (tmp) \
: "r" (v)); \
out;})
/* ----------------------------------------------------------------------- */
#elif _MSC_VER
/* ----------------------------------------------------------------------- */
#include <intrin.h>
#if (_M_IA64 || _M_X64) && \
(!defined(__INTEL_COMPILER) || __INTEL_COMPILER >= 1000)
#define MUL64(rh,rl,i1,i2) (rl) = _umul128(i1,i2,&(rh));
#pragma intrinsic(_umul128)
#define PMUL64 MUL64
#endif
/* MSVC uses add, adc in this version */
#define ADD128(rh,rl,ih,il) \
{ uint64_t _il = (il); \
(rl) += (_il); \
(rh) += (ih) + ((rl) < (_il)); \
}
#if _MSC_VER >= 1300
#define GET_REVERSED_64(p) _byteswap_uint64(*(uint64_t *)(p))
#pragma intrinsic(_byteswap_uint64)
#endif
#if _MSC_VER >= 1400 && \
(!defined(__INTEL_COMPILER) || __INTEL_COMPILER >= 1000)
#define MUL32(i1,i2) (__emulu((uint32_t)(i1),(uint32_t)(i2)))
#pragma intrinsic(__emulu)
#endif
/* ----------------------------------------------------------------------- */
#endif
/* ----------------------------------------------------------------------- */
#if __GNUC__
#define ALIGN(n) __attribute__ ((aligned(n)))
#define NOINLINE __attribute__ ((noinline))
#define FASTCALL
#elif _MSC_VER
#define ALIGN(n) __declspec(align(n))
#define NOINLINE __declspec(noinline)
#define FASTCALL __fastcall
#else
#define ALIGN(n)
#define NOINLINE
#define FASTCALL
#endif
/* ----------------------------------------------------------------------- */
/* Default implementations, if not defined above */
/* ----------------------------------------------------------------------- */
#ifndef ADD128
#define ADD128(rh,rl,ih,il) \
{ uint64_t _il = (il); \
(rl) += (_il); \
if ((rl) < (_il)) (rh)++; \
(rh) += (ih); \
}
#endif
#ifndef MUL32
#define MUL32(i1,i2) ((uint64_t)(uint32_t)(i1)*(uint32_t)(i2))
#endif
#ifndef PMUL64 /* rh may not be same as i1 or i2 */
#define PMUL64(rh,rl,i1,i2) /* Assumes m doesn't overflow */ \
{ uint64_t _i1 = (i1), _i2 = (i2); \
uint64_t m = MUL32(_i1,_i2>>32) + MUL32(_i1>>32,_i2); \
rh = MUL32(_i1>>32,_i2>>32); \
rl = MUL32(_i1,_i2); \
ADD128(rh,rl,(m >> 32),(m << 32)); \
}
#endif
#ifndef MUL64
#define MUL64(rh,rl,i1,i2) \
{ uint64_t _i1 = (i1), _i2 = (i2); \
uint64_t m1= MUL32(_i1,_i2>>32); \
uint64_t m2= MUL32(_i1>>32,_i2); \
rh = MUL32(_i1>>32,_i2>>32); \
rl = MUL32(_i1,_i2); \
ADD128(rh,rl,(m1 >> 32),(m1 << 32)); \
ADD128(rh,rl,(m2 >> 32),(m2 << 32)); \
}
#endif
#ifndef GET_REVERSED_64
#ifndef bswap64
#ifndef bswap32
#define bswap32(x) \
({ uint32_t bsx = (x); \
((((bsx) & 0xff000000u) >> 24) | (((bsx) & 0x00ff0000u) >> 8) | \
(((bsx) & 0x0000ff00u) << 8) | (((bsx) & 0x000000ffu) << 24)); })
#endif
#define bswap64(x) \
({ union { uint64_t ll; uint32_t l[2]; } w, r; \
w.ll = (x); \
r.l[0] = bswap32 (w.l[1]); \
r.l[1] = bswap32 (w.l[0]); \
r.ll; })
#endif
#define GET_REVERSED_64(p) bswap64(*(uint64_t *)(p))
#endif
/* ----------------------------------------------------------------------- */
#if (VMAC_PREFER_BIG_ENDIAN)
# define get64PE get64BE
#else
# define get64PE get64LE
#endif
#if (VMAC_ARCH_BIG_ENDIAN)
# define get64BE(ptr) (*(uint64_t *)(ptr))
# define get64LE(ptr) GET_REVERSED_64(ptr)
#else /* assume little-endian */
# define get64BE(ptr) GET_REVERSED_64(ptr)
# define get64LE(ptr) (*(uint64_t *)(ptr))
#endif
/* --------------------------------------------------------------------- *
* For highest performance the L1 NH and L2 polynomial hashes should be
* carefully implemented to take advantage of one's target architechture.
* Here these two hash functions are defined multiple time; once for
* 64-bit architectures, once for 32-bit SSE2 architectures, and once
* for the rest (32-bit) architectures.
* For each, nh_16 *must* be defined (works on multiples of 16 bytes).
* Optionally, nh_vmac_nhbytes can be defined (for multiples of
* VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
* NH computations at once).
* --------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
#if VMAC_ARCH_64
/* ----------------------------------------------------------------------- */
#define nh_16(mp, kp, nw, rh, rl) \
{ int i; uint64_t th, tl; \
rh = rl = 0; \
for (i = 0; i < nw; i+= 2) { \
MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\
ADD128(rh,rl,th,tl); \
} \
}
#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
{ int i; uint64_t th, tl; \
rh1 = rl1 = rh = rl = 0; \
for (i = 0; i < nw; i+= 2) { \
MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i )+(kp)[i+2],get64PE((mp)+i+1)+(kp)[i+3]);\
ADD128(rh1,rl1,th,tl); \
} \
}
#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
{ int i; uint64_t th, tl; \
rh = rl = 0; \
for (i = 0; i < nw; i+= 8) { \
MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i+2)+(kp)[i+2],get64PE((mp)+i+3)+(kp)[i+3]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i+4)+(kp)[i+4],get64PE((mp)+i+5)+(kp)[i+5]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i+6)+(kp)[i+6],get64PE((mp)+i+7)+(kp)[i+7]);\
ADD128(rh,rl,th,tl); \
} \
}
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
{ int i; uint64_t th, tl; \
rh1 = rl1 = rh = rl = 0; \
for (i = 0; i < nw; i+= 8) { \
MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i )+(kp)[i+2],get64PE((mp)+i+1)+(kp)[i+3]);\
ADD128(rh1,rl1,th,tl); \
MUL64(th,tl,get64PE((mp)+i+2)+(kp)[i+2],get64PE((mp)+i+3)+(kp)[i+3]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i+2)+(kp)[i+4],get64PE((mp)+i+3)+(kp)[i+5]);\
ADD128(rh1,rl1,th,tl); \
MUL64(th,tl,get64PE((mp)+i+4)+(kp)[i+4],get64PE((mp)+i+5)+(kp)[i+5]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i+4)+(kp)[i+6],get64PE((mp)+i+5)+(kp)[i+7]);\
ADD128(rh1,rl1,th,tl); \
MUL64(th,tl,get64PE((mp)+i+6)+(kp)[i+6],get64PE((mp)+i+7)+(kp)[i+7]);\
ADD128(rh,rl,th,tl); \
MUL64(th,tl,get64PE((mp)+i+6)+(kp)[i+8],get64PE((mp)+i+7)+(kp)[i+9]);\
ADD128(rh1,rl1,th,tl); \
} \
}
#endif
#define poly_step(ah, al, kh, kl, mh, ml) \
{ uint64_t t1h, t1l, t2h, t2l, t3h, t3l, z=0; \
/* compute ab*cd, put bd into result registers */ \
PMUL64(t3h,t3l,al,kh); \
PMUL64(t2h,t2l,ah,kl); \
PMUL64(t1h,t1l,ah,2*kh); \
PMUL64(ah,al,al,kl); \
/* add 2 * ac to result */ \
ADD128(ah,al,t1h,t1l); \
/* add together ad + bc */ \
ADD128(t2h,t2l,t3h,t3l); \
/* now (ah,al), (t2l,2*t2h) need summing */ \
/* first add the high registers, carrying into t2h */ \
ADD128(t2h,ah,z,t2l); \
/* double t2h and add top bit of ah */ \
t2h = 2 * t2h + (ah >> 63); \
ah &= m63; \
/* now add the low registers */ \
ADD128(ah,al,mh,ml); \
ADD128(ah,al,z,t2h); \
}
/* ----------------------------------------------------------------------- */
#elif VMAC_USE_SSE2
/* ----------------------------------------------------------------------- */
// macros from Crypto++ for sharing inline assembly code between MSVC and GNU C
#if defined(__GNUC__)
// define these in two steps to allow arguments to be expanded
#define GNU_AS2(x, y) #x ", " #y ";"
#define GNU_AS3(x, y, z) #x ", " #y ", " #z ";"
#define GNU_ASL(x) "\n" #x ":"
#define GNU_ASJ(x, y, z) #x " " #y #z ";"
#define AS2(x, y) GNU_AS2(x, y)
#define AS3(x, y, z) GNU_AS3(x, y, z)
#define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";"
#define ASL(x) GNU_ASL(x)
#define ASJ(x, y, z) GNU_ASJ(x, y, z)
#else
#define AS2(x, y) __asm {x, y}
#define AS3(x, y, z) __asm {x, y, z}
#define ASS(x, y, a, b, c, d) __asm {x, y, _MM_SHUFFLE(a, b, c, d)}
#define ASL(x) __asm {label##x:}
#define ASJ(x, y, z) __asm {x label##y}
#endif
static void NOINLINE nh_16_func(const uint64_t *mp, const uint64_t *kp, size_t nw, uint64_t *rh, uint64_t *rl)
{
// This assembly version, using MMX registers, is just as fast as the
// intrinsics version (which uses XMM registers) on the Intel Core 2,
// but is much faster on the Pentium 4. In order to schedule multiplies
// as early as possible, the loop interleaves operations for the current
// block and the next block. To mask out high 32-bits, we use "movd"
// to move the lower 32-bits to the stack and then back. Surprisingly,
// this is faster than any other method.
#ifdef __GNUC__
__asm__ __volatile__
(
".intel_syntax noprefix;"
#else
AS2( mov esi, mp)
AS2( mov edi, kp)
AS2( mov ecx, nw)
AS2( mov eax, rl)
AS2( mov edx, rh)
#endif
AS2( sub esp, 12)
AS2( movq mm6, [esi])
AS2( paddq mm6, [edi])
AS2( movq mm5, [esi+8])
AS2( paddq mm5, [edi+8])
AS2( add esi, 16)
AS2( add edi, 16)
AS2( movq mm4, mm6)
ASS( pshufw mm2, mm6, 1, 0, 3, 2)
AS2( pmuludq mm6, mm5)
ASS( pshufw mm3, mm5, 1, 0, 3, 2)
AS2( pmuludq mm5, mm2)
AS2( pmuludq mm2, mm3)
AS2( pmuludq mm3, mm4)
AS2( pxor mm7, mm7)
AS2( movd [esp], mm6)
AS2( psrlq mm6, 32)
AS2( movd [esp+4], mm5)
AS2( psrlq mm5, 32)
AS2( sub ecx, 2)
ASJ( jz, 1, f)
ASL(0)
AS2( movq mm0, [esi])
AS2( paddq mm0, [edi])
AS2( movq mm1, [esi+8])
AS2( paddq mm1, [edi+8])
AS2( add esi, 16)
AS2( add edi, 16)
AS2( movq mm4, mm0)
AS2( paddq mm5, mm2)
ASS( pshufw mm2, mm0, 1, 0, 3, 2)
AS2( pmuludq mm0, mm1)
AS2( movd [esp+8], mm3)
AS2( psrlq mm3, 32)
AS2( paddq mm5, mm3)
ASS( pshufw mm3, mm1, 1, 0, 3, 2)
AS2( pmuludq mm1, mm2)
AS2( pmuludq mm2, mm3)
AS2( pmuludq mm3, mm4)
AS2( movd mm4, [esp])
AS2( paddq mm7, mm4)
AS2( movd mm4, [esp+4])
AS2( paddq mm6, mm4)
AS2( movd mm4, [esp+8])
AS2( paddq mm6, mm4)
AS2( movd [esp], mm0)
AS2( psrlq mm0, 32)
AS2( paddq mm6, mm0)
AS2( movd [esp+4], mm1)
AS2( psrlq mm1, 32)
AS2( paddq mm5, mm1)
AS2( sub ecx, 2)
ASJ( jnz, 0, b)
ASL(1)
AS2( paddq mm5, mm2)
AS2( movd [esp+8], mm3)
AS2( psrlq mm3, 32)
AS2( paddq mm5, mm3)
AS2( movd mm4, [esp])
AS2( paddq mm7, mm4)
AS2( movd mm4, [esp+4])
AS2( paddq mm6, mm4)
AS2( movd mm4, [esp+8])
AS2( paddq mm6, mm4)
ASS( pshufw mm0, mm7, 3, 2, 1, 0)
AS2( psrlq mm7, 32)
AS2( paddq mm6, mm7)
AS2( punpckldq mm0, mm6)
AS2( psrlq mm6, 32)
AS2( paddq mm5, mm6)
AS2( movq [eax], mm0)
AS2( movq [edx], mm5)
AS2( add esp, 12)
#ifdef __GNUC__
".att_syntax prefix;"
:
: "S" (mp), "D" (kp), "c" (nw), "a" (rl), "d" (rh)
: "memory", "cc"
);
#endif
}
#define nh_16(mp, kp, nw, rh, rl) nh_16_func(mp, kp, nw, &(rh), &(rl));
static void poly_step_func(uint64_t *ahi, uint64_t *alo, const uint64_t *kh,
const uint64_t *kl, const uint64_t *mh, const uint64_t *ml)
{
// This code tries to schedule the multiplies as early as possible to overcome
// the long latencies on the Pentium 4. It also minimizes "movq" instructions
// which are very expensive on the P4.
#define a0 [eax+0]
#define a1 [eax+4]
#define a2 [ebx+0]
#define a3 [ebx+4]
#define k0 [ecx+0]
#define k1 [ecx+4]
#define k2 [edx+0]
#define k3 [edx+4]
#ifdef __GNUC__
uint32_t temp;
__asm__ __volatile__
(
"mov %%ebx, %0;"
"mov %1, %%ebx;"
".intel_syntax noprefix;"
#else
AS2( mov ebx, ahi)
AS2( mov edx, kh)
AS2( mov eax, alo)
AS2( mov ecx, kl)
AS2( mov esi, mh)
AS2( mov edi, ml)
#endif
AS2( movd mm0, a3)
AS2( movq mm4, mm0)
AS2( pmuludq mm0, k3) // a3*k3
AS2( movd mm1, a0)
AS2( pmuludq mm1, k2) // a0*k2
AS2( movd mm2, a1)
AS2( movd mm6, k1)
AS2( pmuludq mm2, mm6) // a1*k1
AS2( movd mm3, a2)
AS2( movq mm5, mm3)
AS2( movd mm7, k0)
AS2( pmuludq mm3, mm7) // a2*k0
AS2( pmuludq mm4, mm7) // a3*k0
AS2( pmuludq mm5, mm6) // a2*k1
AS2( psllq mm0, 1)
AS2( paddq mm0, [esi])
AS2( paddq mm0, mm1)
AS2( movd mm1, a1)
AS2( paddq mm4, mm5)
AS2( movq mm5, mm1)
AS2( pmuludq mm1, k2) // a1*k2
AS2( paddq mm0, mm2)
AS2( movd mm2, a0)
AS2( paddq mm0, mm3)
AS2( movq mm3, mm2)
AS2( pmuludq mm2, k3) // a0*k3
AS2( pmuludq mm3, mm7) // a0*k0
AS2( movd esi, mm0)
AS2( psrlq mm0, 32)
AS2( pmuludq mm7, mm5) // a1*k0
AS2( pmuludq mm5, k3) // a1*k3
AS2( paddq mm0, mm1)
AS2( movd mm1, a2)
AS2( pmuludq mm1, k2) // a2*k2
AS2( paddq mm0, mm2)
AS2( paddq mm0, mm4)
AS2( movq mm4, mm0)
AS2( movd mm2, a3)
AS2( pmuludq mm2, mm6) // a3*k1
AS2( pmuludq mm6, a0) // a0*k1
AS2( psrlq mm0, 31)
AS2( paddq mm0, mm3)
AS2( movd mm3, [edi])
AS2( paddq mm0, mm3)
AS2( movd mm3, a2)
AS2( pmuludq mm3, k3) // a2*k3
AS2( paddq mm5, mm1)
AS2( movd mm1, a3)
AS2( pmuludq mm1, k2) // a3*k2
AS2( paddq mm5, mm2)
AS2( movd mm2, [edi+4])
AS2( psllq mm5, 1)
AS2( paddq mm0, mm5)
AS2( movq mm5, mm0)
AS2( psllq mm4, 33)
AS2( psrlq mm0, 32)
AS2( paddq mm6, mm7)
AS2( movd mm7, esi)
AS2( paddq mm0, mm6)
AS2( paddq mm0, mm2)
AS2( paddq mm3, mm1)
AS2( psllq mm3, 1)
AS2( paddq mm0, mm3)
AS2( psrlq mm4, 1)
AS2( punpckldq mm5, mm0)
AS2( psrlq mm0, 32)
AS2( por mm4, mm7)
AS2( paddq mm0, mm4)
AS2( movq a0, mm5)
AS2( movq a2, mm0)
#ifdef __GNUC__
".att_syntax prefix;"
"mov %0, %%ebx;"
: "=m" (temp)
: "m" (ahi), "D" (ml), "d" (kh), "a" (alo), "S" (mh), "c" (kl)
: "memory", "cc"
);
#endif
#undef a0
#undef a1
#undef a2
#undef a3
#undef k0
#undef k1
#undef k2
#undef k3
}
#define poly_step(ah, al, kh, kl, mh, ml) \
poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
/* ----------------------------------------------------------------------- */
#else /* not VMAC_ARCH_64 and not SSE2 */
/* ----------------------------------------------------------------------- */
#ifndef nh_16
#define nh_16(mp, kp, nw, rh, rl) \
{ uint64_t t1,t2,m1,m2,t; \
int i; \
rh = rl = t = 0; \
for (i = 0; i < nw; i+=2) { \
t1 = get64PE(mp+i) + kp[i]; \
t2 = get64PE(mp+i+1) + kp[i+1]; \
m2 = MUL32(t1 >> 32, t2); \
m1 = MUL32(t1, t2 >> 32); \
ADD128(rh,rl,MUL32(t1 >> 32,t2 >> 32),MUL32(t1,t2)); \
rh += (uint64_t)(uint32_t)(m1 >> 32) + (uint32_t)(m2 >> 32); \
t += (uint64_t)(uint32_t)m1 + (uint32_t)m2; \
} \
ADD128(rh,rl,(t >> 32),(t << 32)); \
}
#endif
static void poly_step_func(uint64_t *ahi, uint64_t *alo, const uint64_t *kh,
const uint64_t *kl, const uint64_t *mh, const uint64_t *ml)
{
#if VMAC_ARCH_BIG_ENDIAN
#define INDEX_HIGH 0
#define INDEX_LOW 1
#else
#define INDEX_HIGH 1
#define INDEX_LOW 0
#endif
#define a0 *(((uint32_t*)alo)+INDEX_LOW)
#define a1 *(((uint32_t*)alo)+INDEX_HIGH)
#define a2 *(((uint32_t*)ahi)+INDEX_LOW)
#define a3 *(((uint32_t*)ahi)+INDEX_HIGH)
#define k0 *(((uint32_t*)kl)+INDEX_LOW)
#define k1 *(((uint32_t*)kl)+INDEX_HIGH)
#define k2 *(((uint32_t*)kh)+INDEX_LOW)
#define k3 *(((uint32_t*)kh)+INDEX_HIGH)
uint64_t p, q, t;
uint32_t t2;
p = MUL32(a3, k3);
p += p;
p += *(uint64_t *)mh;
p += MUL32(a0, k2);
p += MUL32(a1, k1);
p += MUL32(a2, k0);
t = (uint32_t)(p);
p >>= 32;
p += MUL32(a0, k3);
p += MUL32(a1, k2);
p += MUL32(a2, k1);
p += MUL32(a3, k0);
t |= ((uint64_t)((uint32_t)p & 0x7fffffff)) << 32;
p >>= 31;
p += (uint64_t)(((uint32_t*)ml)[INDEX_LOW]);
p += MUL32(a0, k0);
q = MUL32(a1, k3);
q += MUL32(a2, k2);
q += MUL32(a3, k1);
q += q;
p += q;
t2 = (uint32_t)(p);
p >>= 32;
p += (uint64_t)(((uint32_t*)ml)[INDEX_HIGH]);
p += MUL32(a0, k1);
p += MUL32(a1, k0);
q = MUL32(a2, k3);
q += MUL32(a3, k2);
q += q;
p += q;
*(uint64_t *)(alo) = (p << 32) | t2;
p >>= 32;
*(uint64_t *)(ahi) = p + t;
#undef a0
#undef a1
#undef a2
#undef a3
#undef k0
#undef k1
#undef k2
#undef k3
}
#define poly_step(ah, al, kh, kl, mh, ml) \
poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
/* ----------------------------------------------------------------------- */
#endif /* end of specialized NH and poly definitions */
/* ----------------------------------------------------------------------- */
/* At least nh_16 is defined. Defined others as needed here */
#ifndef nh_16_2
#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
nh_16(mp, kp, nw, rh, rl); \
nh_16(mp, ((kp)+2), nw, rh2, rl2);
#endif
#ifndef nh_vmac_nhbytes
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
nh_16(mp, kp, nw, rh, rl)
#endif
#ifndef nh_vmac_nhbytes_2
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);
#endif
/* ----------------------------------------------------------------------- */
void vhash_abort(vmac_ctx_t *ctx)
{
ctx->polytmp[0] = ctx->polykey[0] ;
ctx->polytmp[1] = ctx->polykey[1] ;
#if (VMAC_TAG_LEN == 128)
ctx->polytmp[2] = ctx->polykey[2] ;
ctx->polytmp[3] = ctx->polykey[3] ;
#endif
ctx->first_block_processed = 0;
}
/* ----------------------------------------------------------------------- */
static uint64_t l3hash(uint64_t p1, uint64_t p2,
uint64_t k1, uint64_t k2, uint64_t len)
{
uint64_t rh, rl, t, z=0;
/* fully reduce (p1,p2)+(len,0) mod p127 */
t = p1 >> 63;
p1 &= m63;
ADD128(p1, p2, len, t);
/* At this point, (p1,p2) is at most 2^127+(len<<64) */
t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
ADD128(p1, p2, z, t);
p1 &= m63;
/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
t = p1 + (p2 >> 32);
t += (t >> 32);
t += (uint32_t)t > 0xfffffffeu;
p1 += (t >> 32);
p2 += (p1 << 32);
/* compute (p1+k1)%p64 and (p2+k2)%p64 */
p1 += k1;
p1 += (0 - (p1 < k1)) & 257;
p2 += k2;
p2 += (0 - (p2 < k2)) & 257;
/* compute (p1+k1)*(p2+k2)%p64 */
MUL64(rh, rl, p1, p2);
t = rh >> 56;
ADD128(t, rl, z, rh);
rh <<= 8;
ADD128(t, rl, z, rh);
t += t << 8;
rl += t;
rl += (0 - (rl < t)) & 257;
rl += (0 - (rl > p64-1)) & 257;
return rl;
}
/* ----------------------------------------------------------------------- */
void vhash_update(unsigned char *m,
unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
vmac_ctx_t *ctx)
{
uint64_t rh, rl, *mptr;
const uint64_t *kptr = (uint64_t *)ctx->nhkey;
int i;
uint64_t ch, cl;
uint64_t pkh = ctx->polykey[0];
uint64_t pkl = ctx->polykey[1];
#if (VMAC_TAG_LEN == 128)
uint64_t ch2, cl2, rh2, rl2;
uint64_t pkh2 = ctx->polykey[2];
uint64_t pkl2 = ctx->polykey[3];
#endif
mptr = (uint64_t *)m;
i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
ch = ctx->polytmp[0];
cl = ctx->polytmp[1];
#if (VMAC_TAG_LEN == 128)
ch2 = ctx->polytmp[2];
cl2 = ctx->polytmp[3];
#endif
if ( ! ctx->first_block_processed) {
ctx->first_block_processed = 1;
#if (VMAC_TAG_LEN == 64)
nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl);
#else
nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,rh,rl,rh2,rl2);
rh2 &= m62;
ADD128(ch2,cl2,rh2,rl2);
#endif
rh &= m62;
ADD128(ch,cl,rh,rl);
mptr += (VMAC_NHBYTES/sizeof(uint64_t));
i--;
}
while (i--) {
#if (VMAC_TAG_LEN == 64)
nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl);
#else
nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,rh,rl,rh2,rl2);
rh2 &= m62;
poly_step(ch2,cl2,pkh2,pkl2,rh2,rl2);
#endif
rh &= m62;
poly_step(ch,cl,pkh,pkl,rh,rl);
mptr += (VMAC_NHBYTES/sizeof(uint64_t));
}
ctx->polytmp[0] = ch;
ctx->polytmp[1] = cl;
#if (VMAC_TAG_LEN == 128)
ctx->polytmp[2] = ch2;
ctx->polytmp[3] = cl2;
#endif
#if VMAC_USE_SSE2
_mmm_empty /* SSE2 version of poly_step uses mmx instructions */
#endif
}
/* ----------------------------------------------------------------------- */
uint64_t xvhash(unsigned char m[],
unsigned int mbytes,
uint64_t *tagl,
vmac_ctx_t *ctx)
{
(void) tagl; //unused
uint64_t ch, cl, rh, rl, *mptr;
#if (VMAC_TAG_LEN == 128)
uint64_t ch2, cl2, rh2, rl2;
#endif
const uint64_t *kptr = (uint64_t *)ctx->nhkey;
int i, remaining;
remaining = mbytes % VMAC_NHBYTES;
i = mbytes-remaining;
mptr = (uint64_t *)(m+i);
if (i) vhash_update(m,i,ctx);
ch = ctx->polytmp[0];
cl = ctx->polytmp[1];
#if (VMAC_TAG_LEN == 128)
ch2 = ctx->polytmp[2];
cl2 = ctx->polytmp[3];
#endif
if (remaining) {
#if (VMAC_TAG_LEN == 128)
nh_16_2(mptr,kptr,2*((remaining+15)/16),rh,rl,rh2,rl2);
rh2 &= m62;
#else
nh_16(mptr,kptr,2*((remaining+15)/16),rh,rl);
#endif
rh &= m62;
if (i) {
poly_step(ch,cl,ctx->polykey[0],ctx->polykey[1],rh,rl);
#if (VMAC_TAG_LEN == 128)
poly_step(ch2,cl2,ctx->polykey[2],ctx->polykey[3],rh2,rl2);
#endif
} else {
ADD128(ch,cl,rh,rl);
#if (VMAC_TAG_LEN == 128)
ADD128(ch2,cl2,rh2,rl2);
#endif
}
}
#if VMAC_USE_SSE2
_mmm_empty /* SSE2 version of poly_step uses mmx instructions */
#endif
vhash_abort(ctx);
remaining *= 8;
#if (VMAC_TAG_LEN == 128)
*tagl = l3hash(ch2, cl2, ctx->l3key[2], ctx->l3key[3],remaining);
#endif
return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1],remaining);
}
uint64_t vhash(unsigned char m[],
unsigned int mbytes,
uint64_t *tagl,
vmac_ctx_t *ctx)
{
(void) tagl; //unused
uint64_t rh, rl, *mptr;
const uint64_t *kptr = (uint64_t *)ctx->nhkey;
int i, remaining;
uint64_t ch, cl;
uint64_t pkh = ctx->polykey[0];
uint64_t pkl = ctx->polykey[1];
#if (VMAC_TAG_LEN == 128)
uint64_t ch2, cl2, rh2, rl2;
uint64_t pkh2 = ctx->polykey[2];
uint64_t pkl2 = ctx->polykey[3];
#endif
mptr = (uint64_t *)m;
i = mbytes / VMAC_NHBYTES;
remaining = mbytes % VMAC_NHBYTES;
if (ctx->first_block_processed)
{
ch = ctx->polytmp[0];
cl = ctx->polytmp[1];
#if (VMAC_TAG_LEN == 128)
ch2 = ctx->polytmp[2];
cl2 = ctx->polytmp[3];
#endif
}
else if (i)
{
#if (VMAC_TAG_LEN == 64)
nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,ch,cl);
#else
nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,ch,cl,ch2,cl2);
ch2 &= m62;
ADD128(ch2,cl2,pkh2,pkl2);
#endif
ch &= m62;
ADD128(ch,cl,pkh,pkl);
mptr += (VMAC_NHBYTES/sizeof(uint64_t));
i--;
}
else if (remaining)
{
#if (VMAC_TAG_LEN == 64)
nh_16(mptr,kptr,2*((remaining+15)/16),ch,cl);
#else
nh_16_2(mptr,kptr,2*((remaining+15)/16),ch,cl,ch2,cl2);
ch2 &= m62;
ADD128(ch2,cl2,pkh2,pkl2);
#endif
ch &= m62;
ADD128(ch,cl,pkh,pkl);
mptr += (VMAC_NHBYTES/sizeof(uint64_t));
goto do_l3;
}
else /* Empty String */
{
ch = pkh; cl = pkl;
#if (VMAC_TAG_LEN == 128)
ch2 = pkh2; cl2 = pkl2;
#endif
goto do_l3;
}
while (i--) {
#if (VMAC_TAG_LEN == 64)
nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl);
#else
nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,rh,rl,rh2,rl2);
rh2 &= m62;
poly_step(ch2,cl2,pkh2,pkl2,rh2,rl2);
#endif
rh &= m62;
poly_step(ch,cl,pkh,pkl,rh,rl);
mptr += (VMAC_NHBYTES/sizeof(uint64_t));
}
if (remaining) {