forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_basic.py
51 lines (42 loc) · 1.83 KB
/
test_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2024 - present The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pymc as pm
from pymc.model.transform.basic import prune_vars_detached_from_observed, remove_minibatched_nodes
def test_prune_vars_detached_from_observed():
with pm.Model() as m:
obs_data = pm.Data("obs_data", 0)
a0 = pm.Data("a0", 0)
a1 = pm.Normal("a1", a0)
a2 = pm.Normal("a2", a1)
pm.Normal("obs", a2, observed=obs_data)
d0 = pm.Data("d0", 0)
d1 = pm.Normal("d1", d0)
assert set(m.named_vars.keys()) == {"obs_data", "a0", "a1", "a2", "obs", "d0", "d1"}
pruned_m = prune_vars_detached_from_observed(m)
assert set(pruned_m.named_vars.keys()) == {"obs_data", "a0", "a1", "a2", "obs"}
def test_remove_minibatches():
data_size = 100
data = np.zeros((data_size,))
batch_size = 10
with pm.Model(coords={"d": range(5)}) as m1:
mb = pm.Minibatch(data, batch_size=batch_size)
mu = pm.Normal("mu", dims="d")
x = pm.Normal("x")
y = pm.Normal("y", x, observed=mb, total_size=100)
m2 = remove_minibatched_nodes(m1)
assert m1.y.shape[0].eval() == batch_size
assert m2.y.shape[0].eval() == data_size
assert m1.coords == m2.coords
assert m1.dim_lengths["d"].eval() == m2.dim_lengths["d"].eval()