-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmosse.py
201 lines (177 loc) · 6.47 KB
/
mosse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python
'''
MOSSE tracking sample
This sample implements correlation-based tracking approach, described in [1].
Usage:
mosse.py [--pause] [<video source>]
--pause - Start with playback paused at the first video frame.
Useful for tracking target selection.
Draw rectangles around objects with a mouse to track them.
Keys:
SPACE - pause video
c - clear targets
[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
'''
# Python 2/3 compatibility
from __future__ import print_function
import sys
#PY3 = sys.version_info[0] == 3
#
#if PY3:
# xrange = range
import numpy as np
import cv2
#from common import draw_str, RectSelector
#import video
def rnd_warp(a):
h, w = a.shape[:2]
T = np.zeros((2, 3))
coef = 0.2
ang = (np.random.rand()-0.5)*coef
c, s = np.cos(ang), np.sin(ang)
T[:2, :2] = [[c,-s], [s, c]]
T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef
c = (w/2, h/2)
T[:,2] = c - np.dot(T[:2, :2], c)
return cv2.warpAffine(a, T, (w, h), borderMode = cv2.BORDER_REFLECT)
def divSpec(A, B):
Ar, Ai = A[...,0], A[...,1]
Br, Bi = B[...,0], B[...,1]
C = (Ar+1j*Ai)/(Br+1j*Bi)
C = np.dstack([np.real(C), np.imag(C)]).copy()
return C
eps = 1e-5
class MOSSE:
def __init__(self, frame, rect):
x1, y1, x2, y2 = rect
w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1])
x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2
self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1)
self.size = w, h
img = cv2.getRectSubPix(frame, (w, h), (x, y))
self.win = cv2.createHanningWindow((w, h), cv2.CV_32F)
g = np.zeros((h, w), np.float32)
g[h//2, w//2] = 1
g = cv2.GaussianBlur(g, (-1, -1), 2.0)
g /= g.max()
self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT)
self.H1 = np.zeros_like(self.G)
self.H2 = np.zeros_like(self.G)
for _i in xrange(128):
a = self.preprocess(rnd_warp(img))
A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT)
self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True)
self.H2 += cv2.mulSpectrums( A, A, 0, conjB=True)
self.update_kernel()
self.update(frame)
def update(self, frame, rate = 0.125):
(x, y), (w, h) = self.pos, self.size
self.last_img = img = cv2.getRectSubPix(frame, (w, h), (x, y))
img = self.preprocess(img)
self.last_resp, (dx, dy), self.psr = self.correlate(img)
self.good = self.psr > 8.0
if not self.good:
return
self.pos = x+dx, y+dy
self.last_img = img = cv2.getRectSubPix(frame, (w, h), self.pos)
img = self.preprocess(img)
A = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
H1 = cv2.mulSpectrums(self.G, A, 0, conjB=True)
H2 = cv2.mulSpectrums( A, A, 0, conjB=True)
self.H1 = self.H1 * (1.0-rate) + H1 * rate
self.H2 = self.H2 * (1.0-rate) + H2 * rate
self.update_kernel()
@property
def state_vis(self):
f = cv2.idft(self.H, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
h, w = f.shape
f = np.roll(f, -h//2, 0)
f = np.roll(f, -w//2, 1)
kernel = np.uint8( (f-f.min()) / f.ptp()*255 )
resp = self.last_resp
resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255)
vis = np.hstack([self.last_img, kernel, resp])
return vis
def draw_state(self, vis):
(x, y), (w, h) = self.pos, self.size
x1, y1, x2, y2 = int(x-0.5*w), int(y-0.5*h), int(x+0.5*w), int(y+0.5*h)
cv2.rectangle(vis, (x1, y1), (x2, y2), (0, 0, 255))
if self.good:
cv2.circle(vis, (int(x), int(y)), 2, (0, 0, 255), -1)
else:
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255))
cv2.line(vis, (x2, y1), (x1, y2), (0, 0, 255))
draw_str(vis, (x1, y2+16), 'PSR: %.2f' % self.psr)
def preprocess(self, img):
img = np.log(np.float32(img)+1.0)
img = (img-img.mean()) / (img.std()+eps)
return img*self.win
def correlate(self, img):
C = cv2.mulSpectrums(cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
h, w = resp.shape
_, mval, _, (mx, my) = cv2.minMaxLoc(resp)
side_resp = resp.copy()
cv2.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
smean, sstd = side_resp.mean(), side_resp.std()
psr = (mval-smean) / (sstd+eps)
return resp, (mx-w//2, my-h//2), psr
def update_kernel(self):
self.H = divSpec(self.H1, self.H2)
self.H[...,1] *= -1
def box(self):
return [(int(self.pos[0]),int(self.pos[1])),(int(self.pos[0]+self.size[0]),int(self.pos[1]+self.size[1]))]
#
#class App:
# def __init__(self, video_src, paused = False):
# self.cap = video.create_capture(video_src)
# _, self.frame = self.cap.read()
# cv2.imshow('frame', self.frame)
# self.rect_sel = RectSelector('frame', self.onrect)
# self.trackers = []
# self.paused = paused
#
# def onrect(self, rect):
# frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
# tracker = MOSSE(frame_gray, rect)
# self.trackers.append(tracker)
#
# def run(self):
# while True:
# if not self.paused:
# ret, self.frame = self.cap.read()
# if not ret:
# break
# frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
# for tracker in self.trackers:
# tracker.update(frame_gray)
#
# vis = self.frame.copy()
# for tracker in self.trackers:
# tracker.draw_state(vis)
# if len(self.trackers) > 0:
# cv2.imshow('tracker state', self.trackers[-1].state_vis)
# self.rect_sel.draw(vis)
#
# cv2.imshow('frame', vis)
# ch = cv2.waitKey(10)
# if ch == 27:
# break
# if ch == ord(' '):
# self.paused = not self.paused
# if ch == ord('c'):
# self.trackers = []
#
#
#if __name__ == '__main__':
# print (__doc__)
# import sys, getopt
# opts, args = getopt.getopt(sys.argv[1:], '', ['pause'])
# opts = dict(opts)
# try:
# video_src = args[0]
# except:
# video_src = '0'
#
# App(video_src, paused = '--pause' in opts).run()