-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
159 lines (148 loc) · 5.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
import ResNet
from ArcFace import ArcFace
from my_transformer import MeanFiltersTransform, MedianFiltersTransform, GaussFiltersTransform, \
GaussianFiltersTransformUnsharpMask, MedianFiltersTransformUnsharpMask, MeanFiltersTransformUnsharpMask, MyDataset
# random apply preprocessing
preprocessing = None
def prepare_transform_for_image():
global preprocessing
global test_preprocessing
rotation = transforms.RandomRotation(5)
resized_cropping = transforms.Resize((224, 224))
contrast_brightness_adjustment = transforms.ColorJitter(brightness=0.5, contrast=0.5)
smooth_or_sharpening = transforms.RandomChoice([
MeanFiltersTransform(),
MedianFiltersTransform(),
GaussFiltersTransform(),
GaussianFiltersTransformUnsharpMask(),
MedianFiltersTransformUnsharpMask(),
MeanFiltersTransformUnsharpMask()
])
color_shift = transforms.ColorJitter(hue=0.14)
preprocessing = transforms.Compose(
[
transforms.RandomApply(
[rotation, contrast_brightness_adjustment, smooth_or_sharpening, color_shift], 0.6),
resized_cropping,
transforms.ToTensor(),
]
)
test_preprocessing = transforms.Compose(
[resized_cropping,
transforms.ToTensor(),
])
def read_txt(text_dir):
file = open(text_dir, 'r')
lines = file.readlines()
epoch = int(lines[0])
per_idx = int(lines[1])
cur_idx = lines[2][1:-2].split(',')
for i in range(len(cur_idx)):
cur_idx[i] = int(cur_idx[i])
train_loss = lines[3][1:-2].split(',')
accuracy = lines[4][1:-2].split(',')
for i in range(len(train_loss)):
train_loss[i] = float(train_loss[i])
writer.add_scalar('train/loss', train_loss[i], cur_idx[i]) # 画loss,横坐标为epoch
for i in range(len(accuracy)):
accuracy[i] = float(accuracy[i])
writer.add_scalar('train/accuracy', accuracy[i], cur_idx[i])
return epoch, per_idx, cur_idx, train_loss, accuracy
def make_text_save(text_dir, epoch, pre_idx, tain_idx, train_loss, accuracy):
write_file = open(text_dir, 'w')
write_file.write(str(epoch) + '\n')
write_file.write(str(pre_idx) + '\n')
write_file.write(str(tain_idx) + '\n')
write_file.write(str(train_loss) + '\n')
write_file.write(str(accuracy) + '\n')
write_file.close()
batch_size = 60
num_class = 480
feature_size = 128
lr = 0.001
epochs = 1000
prepare_transform_for_image()
train_dataset = MyDataset('/home/ubuntu/dataset/CASIA/train/',
'/home/ubuntu/dataset/CASIA/train_label.txt', preprocessing)
train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
net = ResNet.resnet34()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# 预览输入图像
writer = SummaryWriter(log_dir='/home/ubuntu/tensorboard_data/tensorboard/')
data_iter = iter(train_dataloader)
images, labels = next(data_iter)
img_grid = torchvision.utils.make_grid(images)
writer.add_image('preview_some_pictures', img_grid)
# images = images.cuda()
# writer.add_graph(net, images)
# 损失函数
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(net.parameters(), lr=lr, weight_decay=0.0005)
torch.autograd.set_grad_enabled(True)
train_loss = []
train_idx = []
per_idx = 0
train_accuracy = []
epoch = 0
record_size = 15
flag = True
# 加载参数
PATH_NET = '/home/ubuntu/graduation_model/deeplearning/CASIA/model_net_74.pt'
# PATH_ARC = '/home/ubuntu/graduation_model/deeplearning/model_arcloss_139.pt'
# flag = False
print("===start load param===")
if flag == True:
net.load_state_dict(torch.load(PATH_NET))
net.train()
# param = torch.load(PATH_ARC)
print("===successfully load net===")
print("===start_training===")
while epoch < epochs:
running_loss = 0.0
accuracy = 0.0
if flag == True:
epoch, per_idx, train_idx, train_loss, train_accuracy = read_txt('/home/ubuntu/graduation_model/deeplearning/CASIA_data.txt')
# epoch, per_idx, train_idx, train_loss,train_accuracy = read_txt('/home/ubuntu/project/data_v1.0.txt')
flag = False
for i, data in enumerate(train_dataloader):
images, label = data
images = images.to(device)
label = label.to(device)
logits,tmp_accuracy = net.forward(images,label)
# out = torch.log(logits)
loss = criterion(logits,label)
# 计算
accuracy += tmp_accuracy
# print(loss.item())
running_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % record_size == 0:
print('[epoch:%d %5d] loss: %.5f accuracy: %.5f' % (
epoch + 1, i + 1, running_loss / record_size, accuracy / record_size))
# print(accuracy/record_size)
train_loss.append(running_loss / record_size)
train_accuracy.append(accuracy.item() / record_size)
train_idx.append(per_idx)
writer.add_scalar('train/loss', running_loss / record_size, per_idx) # 画loss,横坐标为epoch
writer.add_scalar('train/accuracy', accuracy.item() / record_size, per_idx)
accuracy = 0
per_idx += 1
running_loss = 0
if (epoch + 1) % 15 == 0:
save_path = '/home/ubuntu/graduation_model/deeplearning/CASIA_data.txt'
make_text_save(save_path, epoch, per_idx, train_idx, train_loss, train_accuracy)
PATH = "/home/ubuntu/graduation_model/deeplearning/CASIA/model_net_" + str(epoch) + ".pt"
# Save
torch.save(net.state_dict(), PATH)
epoch+=1