-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtexture_LBP.py
159 lines (146 loc) · 5.25 KB
/
texture_LBP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import torchvision.transforms as transforms
from my_transformer import MeanFiltersTransform, MedianFiltersTransform, GaussFiltersTransform, \
GaussianFiltersTransformUnsharpMask, MedianFiltersTransformUnsharpMask, MeanFiltersTransformUnsharpMask
from skimage.transform import rotate
from skimage.feature import local_binary_pattern
from skimage.color import label2rgb
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
preprocessing = None
testprocessing = None
def prepare_transform_for_image():
global preprocessing
global testprocessing
rotation = transforms.RandomRotation(5)
resized_cropping = transforms.Resize((224, 224))
contrast_brightness_adjustment = transforms.ColorJitter(brightness=0.5, contrast=0.5)
color_shift = transforms.ColorJitter(hue=0.14)
preprocessing = transforms.Compose(
[
transforms.RandomApply(
[rotation, contrast_brightness_adjustment, color_shift], 0.6),
MedianFiltersTransform(),
resized_cropping,
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
]
)
testprocessing = transforms.Compose(
[MedianFiltersTransform(),
resized_cropping,
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
]
)
def read_image_and_label(labelpath, imgpath, state='train'):
label_file = open(labelpath, 'r')
content = label_file.readlines()
class_size = 0
min_size = 1000000
lbp_g = []
labels = []
# print('===start read images and labels, generate uniform LBP gallery!===')
for line in content:
img_name, img_label = line.split(' ')[0], int(line.split(' ')[1])
tmp_image_path = imgpath + img_name
# print(tmp_image_path)
if img_label > class_size:
class_size = img_label
if img_label < min_size:
min_size = img_label
if state == 'train':
cur = testprocessing(Image.open(tmp_image_path).convert('L'))
else:
cur = testprocessing(Image.open(tmp_image_path).convert('L'))
# print(cur.size())
cur = cur.numpy()[0]
cur_lbp = local_binary_pattern(cur, 8, 2,'default')
lbp_g.append(cur_lbp)
labels.append(img_label)
return lbp_g, labels
radius = 1
n_points = 8 * radius
dataset = 'CASIA'
# 读入图像
img_PATH = '/home/ubuntu/dataset/'+dataset+'/session/session1/'
label_PATH = '/home/ubuntu/dataset/'+dataset+'/session/session1_label.txt'
save_gallery = '/home/ubuntu/graduation_model/gallery_texture.npy'
save_label = '/home/ubuntu/graduation_model/label_texture.npy'
prepare_transform_for_image()
label_file = open(label_PATH, 'r')
content = label_file.readlines()
class_size = 0
min_size = 1000000
lbp_gallery = []
palmlabel = []
already_processed = False
print('===start read images and labels, generate uniform LBP gallery!===')
if not already_processed:
lbp_gallery, palmlabel = read_image_and_label(label_PATH, img_PATH)
lbp_gallery = np.array(lbp_gallery)
palmlabel = np.array(palmlabel)
# np.save(save_gallery,lbp_gallery)
# np.save(save_label,palmlabel)
else:
lbp_gallery = np.load(save_gallery)
palmlabel = np.load(save_label)
# print(len(lbp_gallery))
# print(image.shape)
# plt.imshow(lbp,'gray')
# plt.show()
print('===DONE!===')
# 直方图
hist_gallery = []
n_bins = int(lbp_gallery[0].max() + 1)
print('===start generating histogram!===')
for tmp_lbp in lbp_gallery:
hist, bins = np.histogram(tmp_lbp.ravel(), bins=n_bins, range=(0, n_bins))
hist_gallery.append(hist)
hist_gallery = np.array(hist_gallery)
# hist_gallery = lbp_gallery
print('===DONE!===')
# print(hist)
# plt.hist(lbp.ravel(),bins=n_bins,range=(0,n_bins),density=True)
# plt.show()
# 测试
print('===start test!===')
testimg_PATH = '/home/ubuntu/dataset/'+dataset+'/test_session/session2/'
testlabel_PATH = '/home/ubuntu/dataset/'+dataset+'/test_session/session2_label.txt'
print('===start load test image!===')
test_lbp_gallery, test_labels = read_image_and_label(testlabel_PATH, testimg_PATH)
print(len(test_lbp_gallery))
print('===load success! generate LBP success!===')
test_hist = test_lbp_gallery
print('===start generating test histogram!===')
for tmp_lbp in test_lbp_gallery:
hist, bins = np.histogram(tmp_lbp.ravel(), bins=n_bins, range=(0, n_bins))
test_hist.append(hist)
# print(len(test_hist))
print('===DONE!===')
print('===start recognition===')
idx = 0
cur_correct = 0
total_correct = 0
batch = 0
while idx < len(test_lbp_gallery):
tmp_hist = test_hist[idx].reshape(1, -1)
# print(tmp_hist.shape)
# print(hist_gallery.shape)
cos_similarity = cosine_similarity(hist_gallery, tmp_hist)
# print(cos_similarity.shape)
best_match = np.argmax(cos_similarity)
# print(best_match)
# print('%d =? %d'%(palmlabel[best_match],test_labels[idx]))
if palmlabel[best_match] == test_labels[idx]:
cur_correct += 1
total_correct += 1
if (idx + 1) % 100 == 0:
print('batch %d: correct rate = %.2f' % (batch, cur_correct / 100))
cur_correct = 0
batch += 1
idx += 1
print('TOTAL CORRECT RATE: %.2f' % (total_correct / len(test_hist)))