-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft_resnet_test.py
147 lines (136 loc) · 5.51 KB
/
fft_resnet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
import ResNet
from ArcFace import ArcFace
from my_transformer import MeanFiltersTransform, MedianFiltersTransform, GaussFiltersTransform, \
GaussianFiltersTransformUnsharpMask, MedianFiltersTransformUnsharpMask, MeanFiltersTransformUnsharpMask, MyDataset, \
FFT_converter
# random apply preprocessing
preprocessing = []
gallery_preprocessing = []
def prepare_transform_for_image():
global preprocessing
global gallery_preprocessing
rotation = transforms.RandomRotation(6)
resized_cropping = transforms.Resize((224, 224))
my_fft_converter = FFT_converter()
my_fft_converter.__int__(12)
contrast_brightness_adjustment = transforms.ColorJitter(brightness=0.5, contrast=0.5)
smooth_or_sharpening = transforms.RandomChoice([
MeanFiltersTransform(),
MedianFiltersTransform(),
GaussFiltersTransform(),
GaussianFiltersTransformUnsharpMask(),
MedianFiltersTransformUnsharpMask(),
MeanFiltersTransformUnsharpMask()
])
color_shift = transforms.ColorJitter(hue=0.14)
preprocessing = transforms.Compose(
[
transforms.RandomApply(
[rotation, contrast_brightness_adjustment, smooth_or_sharpening, color_shift], 0.6),
resized_cropping,
# my_fft_converter(0.03),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)
gallery_preprocessing = transforms.Compose(
[resized_cropping,
my_fft_converter,
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def calculate_cos_similarity(test_feature):
# print(test_feature.size())
# print(feature_gallery.size())
cosine_similarity = torch.cosine_similarity(feature_gallery, test_feature.unsqueeze(0), dim=1, eps=1e-08)
return cosine_similarity
def calculate_accuracy(logits, label):
_, pred = torch.max(logits.data, 1)
i = 0
while i < len(pred):
pred[i] = gallery_label[pred[i]]
i += 1
return (label.data == pred).float().mean()
batch_size = 40
num_class = 480
feature_size = 128
lr = 0.001
epochs = 1000
prepare_transform_for_image()
dataset = 'CASIA'
root_path = '/home/ubuntu/dataset/' + dataset + '/test_session/'
session1_dataset = MyDataset(root_path + 'session1/',
root_path + 'session1_label.txt', gallery_preprocessing)
session2_dataset = MyDataset(root_path + 'session2/',
root_path + 'session2_label.txt', gallery_preprocessing)
session1_dataloader = DataLoader(dataset=session1_dataset, batch_size=batch_size, shuffle=False)
session2_dataloader = DataLoader(dataset=session2_dataset, batch_size=batch_size, shuffle=True)
# train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
net = ResNet.resnet34()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# 加载参数
PATH_NET = '/home/ubuntu/graduation_model/deeplearning/model_net_419.pt'
print("===start load param===")
net.load_state_dict(torch.load(PATH_NET))
net.eval()
print("===successfully load net===")
writer = SummaryWriter(log_dir='/home/ubuntu/tensorboard_data/')
data_iter = iter(session1_dataloader)
images, labels = next(data_iter)
img_grid = torchvision.utils.make_grid(images)
writer.add_image('preview some pictures after', img_grid)
print("===palm print recognition test===")
with torch.no_grad():
print("===start generating gallery===")
gallery_label = []
feature_gallery = []
for i, data in enumerate(session1_dataloader):
images, label = data
images = images.type(torch.FloatTensor)
images = images.to(device)
label = label.to(device)
gallery_label.extend(label)
feats, normalized_feature = net(images, None)
if i == 0:
feature_gallery = torch.cat([normalized_feature, torch.flip(normalized_feature, [1])], 1)
else:
tmp = torch.cat([normalized_feature, torch.flip(normalized_feature, [1])], 1)
feature_gallery = torch.cat([feature_gallery, tmp], 0)
if (i + 1) % 10 == 0:
print('[batch: %d DONE!]' % (i))
print("===generate gallery completed!===")
print("===start test===")
average_accuracy = 0
total = 0
total_i = 0
for i, data in enumerate(session2_dataloader):
images, label = data
images = images.type(torch.FloatTensor)
images = images.to(device)
label = label.to(device)
feature, normalized_feature = net(images, None)
tmp = torch.cat([normalized_feature, torch.flip(normalized_feature, [1])], 1)
prec_logits = []
k = 0
for tmp_feature in tmp:
if k == 0:
prec_logits = calculate_cos_similarity(tmp_feature)
prec_logits = torch.unsqueeze(prec_logits, 0)
else:
tmp = calculate_cos_similarity(tmp_feature)
prec_logits = torch.cat([prec_logits, torch.unsqueeze(tmp, 0)], 0)
k += 1
average_accuracy += calculate_accuracy(prec_logits, label)
total += calculate_accuracy(prec_logits, label)
total_i += 1
if (i + 1) % 10 == 0:
print('[batch: %d] accuracy: %.3f' % (i, average_accuracy / 10))
average_accuracy = 0
print("general average accuracy: %.3f" % (total / total_i))