-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHOG.py
154 lines (135 loc) · 6.33 KB
/
HOG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import cv2
import numpy as np
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from my_transformer import MeanFiltersTransform, MedianFiltersTransform, GaussFiltersTransform, \
GaussianFiltersTransformUnsharpMask, MedianFiltersTransformUnsharpMask, MeanFiltersTransformUnsharpMask, MyDataset
from skimage.feature import hog
preprocessing = []
testprocessing = []
to_greyscale = None
batch_size = 50
def prepare_transform_for_image():
global preprocessing
global testprocessing
global to_greyscale
rotation = transforms.RandomRotation(5)
resized_cropping = transforms.Resize((224, 224))
contrast_brightness_adjustment = transforms.ColorJitter(brightness=0.5, contrast=0.5)
smooth_or_sharpening = transforms.RandomChoice([
MeanFiltersTransform(),
MedianFiltersTransform(),
GaussFiltersTransform(),
GaussianFiltersTransformUnsharpMask(),
MedianFiltersTransformUnsharpMask(),
MeanFiltersTransformUnsharpMask()
])
color_shift = transforms.ColorJitter(hue=0.14)
preprocessing = transforms.Compose(
[
transforms.RandomApply(
[rotation, contrast_brightness_adjustment, smooth_or_sharpening, color_shift], 0.6),
resized_cropping,
# transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
]
)
to_greyscale = transforms.Compose(
[
transforms.Resize((32, 32)),
transforms.Grayscale(),
]
)
testprocessing = transforms.Compose(
[resized_cropping,
# transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)])
class MyHogSVM:
"Face Recognition for face using HOG+SVM"
def __init__(self, name_dataset, dir_data, size_img, N_identity, N_training_img):
super(MyHogSVM, self).__init__(name_dataset, dir_data, size_img, N_identity, N_training_img)
def extract_HOG_img(self, img):
HOG_cells = self.init_cell_img(img)
HOG_blocks = self.combine_cells_to_block(HOG_cells)
return HOG_blocks
def init_cell_img(self, img, width_size=8, binsize=9):
'''
:param width_size: width and height of one cell
:param binsize: number of orient
:return: HOG of cells in a image
'''
self.width_size_cell = width_size
self.binsize_cell = binsize
height_size = width_size
N_cells_height, N_cells_width = self.height // height_size, self.width // width_size
# np.zeros可以生成任意大小的ndarray
HOG_cells = np.zeros((N_cells_height, N_cells_width, binsize), dtype=np.int32)
# cal histogram of cells
for i in range(N_cells_height):
# 标记要计算HOG的点
row_cell = height_size * i
for j in range(N_cells_width):
col_cell = width_size * j
HOG_cells[i, j] = self.cal_histogram_cell(
img[row_cell:row_cell + N_cells_width, col_cell:col_cell + N_cells_height])
return HOG_cells
def combine_cells_to_block(self, HOG_cells, width_size=2, height_size=2):
assert (width_size == height_size)
# block和cell一样都是堆叠的
N_blocks_height, N_blocks_width = self.width_size_cell - width_size + 1, self.width_size_cell - height_size + 1
self.width_size_block = width_size
HOG_blocks = np.zeros((N_blocks_height, N_blocks_width, width_size * width_size * self.binsize_cell),
dtype=np.float32)
for i in range(N_blocks_height): # height 也就是行,秉承着先行后列的习惯,就先height后width了
for j in range(N_blocks_width):
# collection cells in a block
# 把4个cell的HOG特征串联成新的block特征,LBP+h其实就是把图像分成了多个block
HOG_block = HOG_cells[i:i + height_size, j:j + width_size].flatten().astype(np.float32)
# L1归一化特征,这一步可能有点问题, 因为特征是向量,所有后续的所有东西都是向量或矩阵
# 对光照和阴影获得更好的效果
HOG_block /= np.sqrt(np.sum(abs(HOG_block)) + 1e-6) # 防止0的平方根
HOG_blocks[i, j] = HOG_block
# 把blocks的HOG特征串联起来,就是整个图像的HOG特征
self.size_HOG_feature = HOG_blocks.size
# print('size of HOG for img is %d'%self.size_HOG_feature)
return HOG_blocks.flatten()
def cal_histogram_cell(self, img_cell):
'''
:param img_np: imread(path, 0), a cell of gray image
:return: the histogram of a cell
'''
img_np = img_cell
#############cal value and angle of gradient###################
dx = cv2.Sobel(img_np, cv2.CV_16S, 1, 0)
dy = cv2.Sobel(img_np, cv2.CV_16S, 0, 1)
# s is a small number avoiding /0
s = 1e-3
angle = np.int32(np.arctan(dy / (dx + s)) / np.pi * 180) + 90 # 为什么要加90
# 将梯度转回uint8
dy = cv2.convertScaleAbs(dy)
dx = cv2.convertScaleAbs(dx)
# 计算梯度大小,结合水平梯度和竖直梯度
value_grd = cv2.addWeighted(dx, 0.5, dy, 0.5, 0)
# imshow('test_gra', value_grd)
###########collecting histogram of gradient#####################
# hist is a 9D vector
hist = np.zeros((self.binsize_cell), dtype=np.int32)
# 180 or 360, 效果有什么不同
step = 180 // self.binsize_cell
seq_bins = angle // step
seq_bins = seq_bins.flatten()
value_grd = value_grd.flatten()
for seq_i, val in zip(seq_bins.flatten(), value_grd.flatten()):
hist[seq_i] += val
return hist
prepare_transform_for_image()
dataset = 'IITD'
root_path = '/home/ubuntu/dataset/' + dataset + '/test_session/'
session1_dataset = MyDataset(root_path + 'session1/',
root_path + 'session1_label.txt', testprocessing)
session2_dataset = MyDataset(root_path + 'session2/',
root_path + 'session2_label.txt', testprocessing)
session1_dataloader = DataLoader(dataset=session1_dataset, batch_size=batch_size, shuffle=False)
session2_dataloader = DataLoader(dataset=session2_dataset, batch_size=batch_size, shuffle=True)