Skip to content

Latest commit

 

History

History
84 lines (73 loc) · 4.26 KB

README.md

File metadata and controls

84 lines (73 loc) · 4.26 KB

slack CircleCI Quality Gate Status

Argo Image

What is Argo Workflows?

Argo Workflows is an open source container-native workflow engine for orchestrating parallel jobs on Kubernetes. Argo Workflows is implemented as a Kubernetes CRD (Custom Resource Definition).

  • Define workflows where each step in the workflow is a container.
  • Model multi-step workflows as a sequence of tasks or capture the dependencies between tasks using a graph (DAG).
  • Easily run compute intensive jobs for machine learning or data processing in a fraction of the time using Argo Workflows on Kubernetes.
  • Run CI/CD pipelines natively on Kubernetes without configuring complex software development products.

Argo is a Cloud Native Computing Foundation (CNCF) hosted project.

Why Argo Workflows?

  • Designed from the ground up for containers without the overhead and limitations of legacy VM and server-based environments.
  • Cloud agnostic and can run on any Kubernetes cluster.
  • Easily orchestrate highly parallel jobs on Kubernetes.
  • Argo Workflows puts a cloud-scale supercomputer at your fingertips!

Quickstart

kubectl create namespace argo
kubectl apply -n argo -f https://raw.githubusercontent.com/argoproj/argo/stable/manifests/install.yaml

Who uses Argo Workflows?

Official Argo Workflows user list

Documentation

Features

  • UI to visualize and manage Workflows
  • Artifact support (S3, Artifactory, HTTP, Git, GCS, raw)
  • Workflow templating to store commonly used Workflows in the cluster
  • Archiving Workflows after executing for later access
  • Scheduled workflows
  • Server interface with REST API
  • DAG or Steps based declaration of workflows
  • Step level input & outputs (artifacts/parameters)
  • Loops
  • Parameterization
  • Conditionals
  • Timeouts (step & workflow level)
  • Retry (step & workflow level)
  • Resubmit (memoized)
  • Suspend & Resume
  • Cancellation
  • K8s resource orchestration
  • Exit Hooks (notifications, cleanup)
  • Garbage collection of completed workflow
  • Scheduling (affinity/tolerations/node selectors)
  • Volumes (ephemeral/existing)
  • Parallelism limits
  • Daemoned steps
  • DinD (docker-in-docker)
  • Script steps
  • Event emission
  • Prometheus metrics
  • Multiple executors
  • Multiple pod and workflow garbage collection strategies
  • Automatically calculated resource usage per step
  • Pod Disruption Budget support

Community Blogs and Presentations

Project Resources