|
22 | 22 | import subprocess
|
23 | 23 | import tempfile
|
24 | 24 | from addict import Dict as ADDict
|
25 |
| -from typing import Any, Dict, Tuple, List, Optional, Union |
| 25 | +from typing import Any, Dict, Tuple, Optional, Union |
26 | 26 | from zipfile import ZipFile
|
27 | 27 |
|
28 | 28 | import numpy as np
|
29 | 29 |
|
30 |
| -from ote_sdk.utils.segmentation_utils import (create_hard_prediction_from_soft_prediction, |
31 |
| - create_annotation_from_segmentation_map) |
32 | 30 | from ote_sdk.entities.datasets import DatasetEntity
|
33 |
| -from ote_sdk.entities.annotation import AnnotationSceneEntity, AnnotationSceneKind |
| 31 | +from ote_sdk.entities.annotation import AnnotationSceneEntity |
34 | 32 | from ote_sdk.entities.inference_parameters import InferenceParameters, default_progress_callback
|
35 | 33 | from ote_sdk.entities.label_schema import LabelSchemaEntity
|
36 | 34 | from ote_sdk.entities.model import (
|
37 | 35 | ModelStatus,
|
38 | 36 | ModelEntity,
|
39 | 37 | ModelFormat,
|
40 |
| - OptimizationMethod, |
| 38 | + ModelOptimizationType, |
41 | 39 | ModelPrecision,
|
| 40 | + OptimizationMethod |
42 | 41 | )
|
43 | 42 | from ote_sdk.entities.optimization_parameters import OptimizationParameters
|
44 | 43 | from ote_sdk.entities.resultset import ResultSetEntity
|
@@ -280,7 +279,7 @@ def optimize(self,
|
280 | 279 | # set model attributes for quantized model
|
281 | 280 | output_model.model_status = ModelStatus.SUCCESS
|
282 | 281 | output_model.model_format = ModelFormat.OPENVINO
|
283 |
| - output_model.optimization_type = OptimizationType.POT |
| 282 | + output_model.optimization_type = ModelOptimizationType.POT |
284 | 283 | output_model.optimization_methods = [OptimizationMethod.QUANTIZATION]
|
285 | 284 | output_model.precision = [ModelPrecision.INT8]
|
286 | 285 |
|
|
0 commit comments