-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
440 lines (384 loc) · 27.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import numpy as np
import os
from torch.utils.data import DataLoader
from vad_datasets import unified_dataset_interface, cube_to_train_dataset
from fore_det.inference import init_detector
from vad_datasets import bbox_collate, img_tensor2numpy, img_batch_tensor2numpy, frame_size
from fore_det.obj_det_with_motion import imshow_bboxes, get_ap_bboxes, get_mt_bboxes, del_cover_bboxes
from fore_det.simple_patch import get_patch_loc
import cv2
from helper.misc import AverageMeter
import torch
from model.unet import SelfCompleteNet4, SelfCompleteNetFull, SelfCompleteNet1raw1of
import torch.optim as optim
import torch.nn as nn
from configparser import ConfigParser
from utils import calc_block_idx
# /*-------------------------------------------------Overall parameter setting-----------------------------------------------------*/
cp = ConfigParser()
cp.read("config.cfg")
dataset_name = cp.get('shared_parameters', 'dataset_name') # The name of dataset: UCSDped2/avenue/ShanghaiTech.
raw_dataset_dir = cp.get('shared_parameters', 'raw_dataset_dir') # Fixed
foreground_extraction_mode = cp.get('shared_parameters', 'foreground_extraction_mode') # Foreground extraction method: obj_det_with_motion/obj_det/simple_patch/frame.
data_root_dir = cp.get('shared_parameters', 'data_root_dir') # Fixed: A folder that stores the data such as foreground produced by the program.
modality = cp.get('shared_parameters', 'modality') # Fixed
mode = cp.get('train_parameters', 'mode') # Fixed
method = cp.get('shared_parameters', 'method') # Fixed
try:
patch_size = cp.getint(dataset_name, 'patch_size') # Resize the foreground bounding boxes.
train_block_mode = cp.getint(dataset_name, 'train_block_mode') # Fixed
motionThr = cp.getfloat(dataset_name, 'motionThr') # Fixed
# Define h_block * w_block sub-regions of video frames for localized training
h_block = cp.getint(dataset_name, 'h_block') # Localized
w_block = cp.getint(dataset_name, 'w_block') # Localized
# Set 'bbox_save=False' and 'foreground_saved=False' at first to calculate and store the bboxes and foreground,
# then set them to True to load the stored bboxes and foreground directly, if the foreground parameters remain unchanged.
bbox_saved = cp.getboolean(dataset_name, 'train_bbox_saved')
foreground_saved = cp.getboolean(dataset_name, 'train_foreground_saved')
except:
raise NotImplementedError
# /*--------------------------------------------------Foreground localization-----------------------------------------------------*/
config_file = 'fore_det/obj_det_config/cascade_rcnn_r101_fpn_1x.py'
checkpoint_file = 'fore_det/obj_det_checkpoints/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth'
# Set dataset for foreground localization.
dataset = unified_dataset_interface(dataset_name=dataset_name, dir=os.path.join(raw_dataset_dir, dataset_name),
context_frame_num=1, mode=mode, border_mode='hard')
if not bbox_saved:
# Build the object detector from a config file and a checkpoint file.
model = init_detector(config_file, checkpoint_file, device='cuda:0')
all_bboxes = list()
for idx in range(dataset.__len__()):
batch, _ = dataset.__getitem__(idx)
print('Extracting bboxes of {}-th frame'.format(idx + 1))
cur_img = img_tensor2numpy(batch[1])
if foreground_extraction_mode == 'obj_det_with_motion':
# A coarse detection of bboxes by pretrained object detector.
ap_bboxes = get_ap_bboxes(cur_img, model, dataset_name, verbose=False)
# Delete overlapping appearance based bounding boxes.
ap_bboxes = del_cover_bboxes(ap_bboxes, dataset_name)
# imshow_bboxes(cur_img, ap_bboxes, win_name='kept ap based bboxes')
# Further foreground detection by motion.
mt_bboxes = get_mt_bboxes(cur_img, img_batch_tensor2numpy(batch), ap_bboxes, dataset_name, verbose=False)
if mt_bboxes.shape[0] > 0:
cur_bboxes = np.concatenate((ap_bboxes, mt_bboxes), axis=0)
else:
cur_bboxes = ap_bboxes
elif foreground_extraction_mode == 'obj_det':
# A coarse detection of bboxes by pretrained object detector
ap_bboxes = get_ap_bboxes(cur_img, model, dataset_name)
cur_bboxes = del_cover_bboxes(ap_bboxes, dataset_name)
elif foreground_extraction_mode == 'simple_patch':
patch_num_list = [(3, 4), (6, 8)]
cur_bboxes = list()
for h_num, w_num in patch_num_list:
cur_bboxes.append(get_patch_loc(frame_size[dataset_name][0], frame_size[dataset_name][1], h_num, w_num))
cur_bboxes = np.concatenate(cur_bboxes, axis=0)
elif foreground_extraction_mode == 'frame':
cur_bboxes = list()
cur_bboxes.append([0, 0, cur_img.shape[1], cur_img.shape[0]])
cur_bboxes = np.array(cur_bboxes)
else:
raise NotImplementedError
# imshow_bboxes(cur_img, cur_bboxes, win_name='all foreground bboxes')
all_bboxes.append(cur_bboxes)
np.save(os.path.join(dataset.dir, 'bboxes_train_{}.npy'.format(foreground_extraction_mode)), all_bboxes)
print('bboxes for training data saved!')
else:
all_bboxes = np.load(os.path.join(dataset.dir, 'bboxes_train_{}.npy'.format(foreground_extraction_mode)), allow_pickle=True)
print('bboxes for training data loaded!')
# /*--------------------------------------------------Foreground extraction--------------------------------------------------------*/
if not foreground_saved:
context_frame_num = cp.getint(method, 'context_frame_num')
context_of_num = cp.getint(method, 'context_of_num')
border_mode = cp.get(method, 'border_mode')
if modality == 'raw_datasets':
file_format = frame_size[dataset_name][2]
elif modality == 'raw2flow':
file_format1 = frame_size[dataset_name][2]
file_format2 = '.npy'
else:
file_format = '.npy'
if modality == 'raw2flow':
dataset = unified_dataset_interface(dataset_name=dataset_name, dir=os.path.join('raw_datasets', dataset_name),
context_frame_num=context_frame_num, mode=mode, border_mode=border_mode,
all_bboxes=all_bboxes, patch_size=patch_size, file_format=file_format1)
dataset2 = unified_dataset_interface(dataset_name=dataset_name, dir=os.path.join('optical_flow', dataset_name),
context_frame_num=context_of_num, mode=mode, border_mode=border_mode,
all_bboxes=all_bboxes, patch_size=patch_size, file_format=file_format2)
else:
dataset = unified_dataset_interface(dataset_name=dataset_name, dir=os.path.join(modality, dataset_name),
context_frame_num=context_frame_num, mode=mode, border_mode=border_mode,
all_bboxes=all_bboxes, patch_size=patch_size, file_format=file_format)
if dataset_name == 'ShanghaiTech':
foreground_set = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
if modality == 'raw2flow':
foreground_set2 = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
else:
foreground_set = [[[] for ww in range(w_block)] for hh in range(h_block)]
if modality == 'raw2flow':
foreground_set2 = [[[] for ww in range(w_block)] for hh in range(h_block)]
h_step, w_step = frame_size[dataset_name][0] / h_block, frame_size[dataset_name][1] / w_block
# ShanghaiTech training set is too large and needs to be stored in segments (Memory=64G).
if dataset_name == 'ShanghaiTech' and modality == 'raw2flow':
randIdx = np.random.permutation(dataset.__len__())
cout = 0
segIdx = 0
saveSegNum = cp.getint(dataset_name, 'saveSegNum')
for iidx in range(dataset.__len__()):
if dataset_name == 'ShanghaiTech' and modality == 'raw2flow':
idx = randIdx[iidx]
cout += 1
else:
idx = iidx
batch, _ = dataset.__getitem__(idx)
if modality == 'raw2flow':
batch2, _ = dataset2.__getitem__(idx)
if dataset_name == 'ShanghaiTech':
print('Extracting foreground in {}-th batch, {} in total, scene: {}'.format(iidx + 1, dataset.__len__() // 1, dataset.scene_idx[idx]))
else:
print('Extracting foreground in {}-th batch, {} in total'.format(iidx + 1, dataset.__len__() // 1))
cur_bboxes = all_bboxes[idx]
if len(cur_bboxes) > 0:
batch = img_batch_tensor2numpy(batch)
if modality == 'raw2flow':
batch2 = img_batch_tensor2numpy(batch2)
if modality == 'optical_flow':
if len(batch.shape) == 4:
mag = np.sum(np.sum(np.sum(batch ** 2, axis=3), axis=2), axis=1)
else:
mag = np.mean(np.sum(np.sum(np.sum(batch ** 2, axis=4), axis=3), axis=2), axis=1)
elif modality == 'raw2flow':
if len(batch2.shape) == 4:
mag = np.sum(np.sum(np.sum(batch2 ** 2, axis=3), axis=2), axis=1)
else:
mag = np.mean(np.sum(np.sum(np.sum(batch2 ** 2, axis=4), axis=3), axis=2), axis=1)
else:
mag = np.ones(batch.shape[0]) * 10000
for idx_bbox in range(cur_bboxes.shape[0]):
if mag[idx_bbox] > motionThr:
all_blocks = calc_block_idx(cur_bboxes[idx_bbox, 0], cur_bboxes[idx_bbox, 2], cur_bboxes[idx_bbox, 1], cur_bboxes[idx_bbox, 3], h_step, w_step, mode=train_block_mode)
for (h_block_idx, w_block_idx) in all_blocks:
if dataset_name == 'ShanghaiTech':
foreground_set[dataset.scene_idx[idx] - 1][h_block_idx][w_block_idx].append(batch[idx_bbox])
if modality == 'raw2flow':
foreground_set2[dataset.scene_idx[idx] - 1][h_block_idx][w_block_idx].append(batch2[idx_bbox])
else:
foreground_set[h_block_idx][w_block_idx].append(batch[idx_bbox])
if modality == 'raw2flow':
foreground_set2[h_block_idx][w_block_idx].append(batch2[idx_bbox])
if dataset_name == 'ShanghaiTech' and modality == 'raw2flow':
if cout == saveSegNum:
# ShanghaiTech training set is too large and needs to be stored in segments
foreground_set = [[[np.array(foreground_set[ss][hh][ww]) for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
foreground_set2 = [[[np.array(foreground_set2[ss][hh][ww]) for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-raw.npy'.format(foreground_extraction_mode, segIdx)), foreground_set)
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-flow.npy'.format(foreground_extraction_mode, segIdx)), foreground_set2)
del foreground_set, foreground_set2
cout = 0
segIdx += 1
foreground_set = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
foreground_set2 = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
if dataset_name == 'ShanghaiTech':
if modality != 'raw2flow':
foreground_set = [[[np.array(foreground_set[ss][hh][ww]) for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}.npy'.format(foreground_extraction_mode)), foreground_set)
else:
if dataset.__len__() % saveSegNum != 0:
foreground_set = [[[np.array(foreground_set[ss][hh][ww]) for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
foreground_set2 = [[[np.array(foreground_set2[ss][hh][ww]) for ww in range(w_block)] for hh in range(h_block)] for ss in range(dataset.scene_num)]
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-raw.npy'.format(foreground_extraction_mode, segIdx)), foreground_set)
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-flow.npy'.format(foreground_extraction_mode, segIdx)), foreground_set2)
else:
if modality == 'raw2flow':
foreground_set = [[np.array(foreground_set[hh][ww]) for ww in range(w_block)] for hh in range(h_block)]
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}-raw.npy'.format(foreground_extraction_mode)), foreground_set)
foreground_set2 = [[np.array(foreground_set2[hh][ww]) for ww in range(w_block)] for hh in range(h_block)]
np.save(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}-flow.npy'.format(foreground_extraction_mode)), foreground_set2)
else:
foreground_set = [[np.array(foreground_set[hh][ww]) for ww in range(w_block)] for hh in range(h_block)]
np.save(os.path.join(data_root_dir, modality, dataset_name+'_'+'foreground_train_{}.npy'.format(foreground_extraction_mode)), foreground_set)
print('foreground for training data saved!')
else:
if dataset_name != 'ShanghaiTech':
if modality == 'raw2flow':
foreground_set = np.load(os.path.join(data_root_dir, modality, dataset_name+'_'+'foreground_train_{}-raw.npy'.format(foreground_extraction_mode)), allow_pickle=True)
foreground_set2 = np.load(os.path.join(data_root_dir, modality, dataset_name+'_'+'foreground_train_{}-flow.npy'.format(foreground_extraction_mode)), allow_pickle=True)
else:
foreground_set = np.load(os.path.join(data_root_dir, modality, dataset_name+'_'+'foreground_train_{}.npy'.format(foreground_extraction_mode)), allow_pickle=True)
print('foreground for training data loaded!')
else:
if modality != 'raw2flow':
foreground_set = np.load(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}.npy'.format(foreground_extraction_mode)), allow_pickle=True)
# /*-----------------------------------------------Normal video event modeling---------------------------------------------------*/
if method == 'SelfComplete':
loss_func = nn.MSELoss()
epochs = cp.getint(method, 'epochs')
batch_size = cp.getint(method, 'batch_size')
useFlow = cp.getboolean(method, 'useFlow')
border_mode = cp.get(method, 'border_mode')
if border_mode == 'predict':
tot_frame_num = cp.getint(method, 'context_frame_num') + 1
tot_of_num = cp.getint(method, 'context_of_num') + 1
else:
tot_frame_num = 2 * cp.getint(method, 'context_frame_num') + 1
tot_of_num = 2 * cp.getint(method, 'context_of_num') + 1
rawRange = cp.getint(method, 'rawRange')
if rawRange >= tot_frame_num: # If rawRange is out of the range, use all frames.
rawRange = None
padding = cp.getboolean(method, 'padding')
lambda_raw = cp.getfloat(method, 'lambda_raw')
lambda_of = cp.getfloat(method, 'lambda_of')
assert modality == 'raw2flow'
if tot_of_num == 1:
network_architecture = SelfCompleteNet4(features_root=cp.getint(method, 'nf'), tot_raw_num=tot_frame_num, tot_of_num=tot_of_num,
border_mode=border_mode, rawRange=rawRange, useFlow=useFlow, padding=padding)
elif tot_of_num == 5:
network_architecture = SelfCompleteNetFull(features_root=cp.getint(method, 'nf'), tot_raw_num=tot_frame_num, tot_of_num=tot_of_num,
border_mode=border_mode, rawRange=rawRange, useFlow=useFlow, padding=padding)
else:
NotImplementedError
assert tot_frame_num == 5
if dataset_name == 'ShanghaiTech':
model_set = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(frame_size[dataset_name][-1])]
raw_training_scores_set = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(frame_size[dataset_name][-1])]
of_training_scores_set = [[[[] for ww in range(w_block)] for hh in range(h_block)] for ss in range(frame_size[dataset_name][-1])]
else:
model_set = [[[] for ww in range(len(foreground_set[hh]))] for hh in range(len(foreground_set))]
raw_training_scores_set = [[[] for ww in range(len(foreground_set[hh]))] for hh in range(len(foreground_set))]
of_training_scores_set = [[[] for ww in range(len(foreground_set[hh]))] for hh in range(len(foreground_set))]
# Prepare training data in current block
if dataset_name == 'ShanghaiTech':
saveSegNum = cp.getint(dataset_name, 'saveSegNum')
totSegNum = np.int(np.ceil(dataset.__len__() / saveSegNum))
for s_idx in range(len(model_set)):
for h_idx in range(len(model_set[s_idx])):
for w_idx in range(len(model_set[s_idx][h_idx])):
raw_losses = AverageMeter()
of_losses = AverageMeter()
# Prepare UNet model and training parameters for current block
cur_model = torch.nn.DataParallel(network_architecture).cuda()
optimizer = optim.Adam(cur_model.parameters(), eps=1e-7, weight_decay=0.000)
cur_model.train()
for epoch in range(epochs):
for segIdx in range(totSegNum):
foreground_set = np.load(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-raw.npy'.format(foreground_extraction_mode, segIdx)), allow_pickle=True)
foreground_set2 = np.load(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-flow.npy'.format(foreground_extraction_mode, segIdx)), allow_pickle=True)
cur_training_data = foreground_set[s_idx][h_idx][w_idx]
cur_training_data2 = foreground_set2[s_idx][h_idx][w_idx]
cur_dataset = cube_to_train_dataset(cur_training_data, target=cur_training_data2)
cur_dataloader = DataLoader(dataset=cur_dataset, batch_size=batch_size, shuffle=True)
for idx, (inputs, of_targets_all, _) in enumerate(cur_dataloader):
inputs = inputs.cuda().type(torch.cuda.FloatTensor)
of_targets_all = of_targets_all.cuda().type(torch.cuda.FloatTensor)
of_outputs, raw_outputs, of_targets, raw_targets = cur_model(inputs, of_targets_all)
loss_raw = loss_func(raw_targets.detach(), raw_outputs)
if useFlow:
loss_of = loss_func(of_targets.detach(), of_outputs)
if useFlow:
loss = lambda_raw * loss_raw + lambda_of * loss_of
else:
loss = loss_raw
raw_losses.update(loss_raw.item(), inputs.size(0))
if useFlow:
of_losses.update(loss_of.item(), inputs.size(0))
else:
of_losses.update(0., inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if idx % 5 == 0:
print('Block: ({}, {}), epoch {}, seg {}, batch {} of {}, raw loss: {}, of loss: {}'.format(
h_idx, w_idx, epoch, segIdx, idx, cur_dataset.__len__() // batch_size, raw_losses.avg,
of_losses.avg))
model_set[s_idx][h_idx][w_idx].append(cur_model.state_dict())
# A forward pass to store the training scores of optical flow and raw datasets respectively.
for segIdx in range(totSegNum):
foreground_set = np.load(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-raw.npy'.format(foreground_extraction_mode, segIdx)))
foreground_set2 = np.load(os.path.join(data_root_dir, modality, dataset_name + '_' + 'foreground_train_{}_seg_{}-flow.npy'.format(foreground_extraction_mode, segIdx)))
cur_training_data = foreground_set[s_idx][h_idx][w_idx]
cur_training_data2 = foreground_set2[s_idx][h_idx][w_idx]
cur_dataset = cube_to_train_dataset(cur_training_data, target=cur_training_data2)
forward_dataloader = DataLoader(dataset=cur_dataset, batch_size=batch_size, shuffle=False)
score_func = nn.MSELoss(reduce=False)
cur_model.eval()
for idx, (inputs, of_targets_all, _) in enumerate(forward_dataloader):
inputs = inputs.cuda().type(torch.cuda.FloatTensor)
of_targets_all = of_targets_all.cuda().type(torch.cuda.FloatTensor)
of_outputs, raw_outputs, of_targets, raw_targets = cur_model(inputs, of_targets_all)
raw_scores = score_func(raw_targets, raw_outputs).cpu().data.numpy()
raw_scores = np.sum(np.sum(np.sum(raw_scores, axis=3), axis=2), axis=1) # mse
raw_training_scores_set[s_idx][h_idx][w_idx].append(raw_scores)
if useFlow:
of_scores = score_func(of_targets, of_outputs).cpu().data.numpy()
of_scores = np.sum(np.sum(np.sum(of_scores, axis=3), axis=2), axis=1) # mse
of_training_scores_set[s_idx][h_idx][w_idx].append(of_scores)
raw_training_scores_set[s_idx][h_idx][w_idx] = np.concatenate(raw_training_scores_set[s_idx][h_idx][w_idx], axis=0)
if useFlow:
of_training_scores_set[s_idx][h_idx][w_idx] = np.concatenate(of_training_scores_set[s_idx][h_idx][w_idx], axis=0)
del cur_model, raw_losses, of_losses
torch.save(raw_training_scores_set, os.path.join(data_root_dir, modality, dataset_name + '_' + 'raw_training_scores_{}_{}.npy'.format(foreground_extraction_mode, method)))
torch.save(of_training_scores_set, os.path.join(data_root_dir, modality, dataset_name + '_' + 'of_training_scores_{}_{}.npy'.format(foreground_extraction_mode, method)))
else:
raw_losses = AverageMeter()
of_losses = AverageMeter()
for h_idx in range(len(foreground_set)):
for w_idx in range(len(foreground_set[h_idx])):
cur_training_data = foreground_set[h_idx][w_idx]
if len(cur_training_data) > 1: # num > 1 for data parallel
cur_training_data2 = foreground_set2[h_idx][w_idx]
cur_dataset = cube_to_train_dataset(cur_training_data, target=cur_training_data2)
cur_dataloader = DataLoader(dataset=cur_dataset, batch_size=batch_size, shuffle=True)
cur_model = torch.nn.DataParallel(network_architecture).cuda()
optimizer = optim.Adam(cur_model.parameters(), eps=1e-7, weight_decay=0.0)
cur_model.train()
for epoch in range(epochs):
for idx, (inputs, of_targets_all, _) in enumerate(cur_dataloader):
inputs = inputs.cuda().type(torch.cuda.FloatTensor)
of_targets_all = of_targets_all.cuda().type(torch.cuda.FloatTensor)
of_outputs, raw_outputs, of_targets, raw_targets = cur_model(inputs, of_targets_all)
loss_raw = loss_func(raw_targets.detach(), raw_outputs)
if useFlow:
loss_of = loss_func(of_targets.detach(), of_outputs)
if useFlow:
loss = lambda_raw * loss_raw + lambda_of * loss_of
else:
loss = loss_raw
raw_losses.update(loss_raw.item(), inputs.size(0))
if useFlow:
of_losses.update(loss_of.item(), inputs.size(0))
else:
of_losses.update(0., inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if idx % 5 == 0:
print('Block: ({}, {}), epoch {}, batch {} of {}, raw loss: {}, of loss: {}'.format(h_idx, w_idx, epoch, idx,
cur_dataset.__len__() // batch_size,
raw_losses.avg,
of_losses.avg))
model_set[h_idx][w_idx].append(cur_model.state_dict())
# A forward pass to store the training scores of optical flow and raw datasets respectively.
forward_dataloader = DataLoader(dataset=cur_dataset, batch_size=batch_size, shuffle=False)
score_func = nn.MSELoss(reduce=False)
cur_model.eval()
for idx, (inputs, of_targets_all, _) in enumerate(forward_dataloader):
inputs = inputs.cuda().type(torch.cuda.FloatTensor)
of_targets_all = of_targets_all.cuda().type(torch.cuda.FloatTensor)
of_outputs, raw_outputs, of_targets, raw_targets = cur_model(inputs, of_targets_all)
raw_scores = score_func(raw_targets, raw_outputs).cpu().data.numpy()
raw_scores = np.sum(np.sum(np.sum(raw_scores, axis=3), axis=2), axis=1) # mse
raw_training_scores_set[h_idx][w_idx].append(raw_scores)
if useFlow:
of_scores = score_func(of_targets, of_outputs).cpu().data.numpy()
of_scores = np.sum(np.sum(np.sum(of_scores, axis=3), axis=2), axis=1) # mse
of_training_scores_set[h_idx][w_idx].append(of_scores)
raw_training_scores_set[h_idx][w_idx] = np.concatenate(raw_training_scores_set[h_idx][w_idx], axis=0)
if useFlow:
of_training_scores_set[h_idx][w_idx] = np.concatenate(of_training_scores_set[h_idx][w_idx], axis=0)
torch.save(raw_training_scores_set, os.path.join(data_root_dir, modality, dataset_name + '_' + 'raw_training_scores_{}_{}.npy'.format(foreground_extraction_mode, method)))
torch.save(of_training_scores_set, os.path.join(data_root_dir, modality, dataset_name + '_' + 'of_training_scores_{}_{}.npy'.format(foreground_extraction_mode, method)))
print('training scores saved!')
torch.save(model_set, os.path.join(data_root_dir, modality, dataset_name+'_'+'model_{}_{}.npy'.format(foreground_extraction_mode, method)))
print('Training of {} for dataset: {} has completed!'.format(method, dataset_name))
else:
raise NotImplementedError