-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathruntestCLDNN.py
151 lines (120 loc) · 5.13 KB
/
runtestCLDNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import os
import pandas as pd
import tensorflow as tf
import dataset
import model
import time
import argparse
parser = argparse.ArgumentParser(description='CLDNN testing')
parser.add_argument('trial', help='trial number')
args = parser.parse_args()
trial = int(args.trial)
n_channels = 64
save_path = 'checkpoints/cldnn/trial'+str(trial)+'/'+str(n_channels)+'/'
result_path = 'results/cldnn/trial'+str(trial)+'/'+str(n_channels)+'/'
lstm_size = 64 * 3 # 3 times the amount of channels
lstm_layers = 2 # Number of layers
batch_size = 80 # Batch size
seq_len = 160 # Number of steps
learning_rate = 0.0001
epochs = 100
n_hidden_1 = 200 # 1st layer number of neurons
n_hidden_2 = 200 # 2nd layer number of neurons
n_input = lstm_size
n_classes = 109
keep_prob = 0.5
test_acc = []
test_loss = []
test_labels = []
predictions = []
probabilities = []
def test():
t = time.time()
tf.reset_default_graph()
sess = tf.Session()
keep_prob_ = tf.placeholder(tf.float32, name='keep')
learning_rate_ = tf.placeholder(tf.float32, name='learning_rate')
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
inputs, labels, trial_num, total_count = dataset.csv_test(batch_size, n_classes, n_channels, seq_len, trial)
inputs = tf.cast(inputs, tf.float32)
labels = tf.cast(labels, tf.float32)
total_count = tf.cast(total_count, tf.uint16)
logits = model.cldnn_inference(inputs, keep_prob_, weights, biases, lstm_size, lstm_layers, seq_len, batch_size,
n_classes)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=labels))
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
saver = tf.train.Saver()
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
saver.restore(sess, tf.train.latest_checkpoint(save_path))
print("epoch looping")
index = 0
feed = {keep_prob_: 1, learning_rate_: 1}
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
elapsed = time.time() - t
t1 = time.time()
try:
while not coord.should_stop():
index += 1
batch_acc, batch_loss, batch_logits, batch_labels, total_counts = sess.run([accuracy, cost, logits, labels, total_count],
feed_dict=feed)
probabilities.append(tf.nn.softmax(batch_logits).eval(session=sess))
test_labels.append(tf.argmax(batch_labels, 1).eval(session=sess))
predictions.append(tf.argmax(tf.nn.softmax(batch_logits), 1).eval(session=sess))
test_acc.append(batch_acc)
test_loss.append(batch_loss)
print("Iteration: {}/{}".format(index, np.floor(total_counts/batch_size).astype(int)),
"Batch test accuracy: {:.6f}".format(batch_acc))
except tf.errors.OutOfRangeError:
print('epoch reached!')
finally:
coord.request_stop()
coord.join(threads)
elapsed1 = time.time() - t1
clabels = np.concatenate(test_labels, axis=0)
cpredictions = np.concatenate(predictions, axis=0)
cprobabilities = np.concatenate(probabilities, axis=0)
confusion_matrix = tf.confusion_matrix(labels=clabels, predictions=cpredictions).eval(session=sess)
sess.close()
print("Mean test accuracy: {:.6f}".format(np.mean(test_acc)))
df = pd.DataFrame(confusion_matrix)
df.to_csv(result_path+'confusion_matrix.csv')
df1 = pd.DataFrame(clabels)
df1.to_csv(result_path+'labels.csv', header=None, index=None)
df2 = pd.DataFrame(cpredictions)
df2.to_csv(result_path+'predictions.csv', header=None, index=None)
df3 = pd.DataFrame(test_acc)
df3.to_csv(result_path+'test_acc.csv', header=None, index=None)
df4 = pd.DataFrame(cprobabilities)
df4.to_csv(result_path+'probabilities.csv', header=None, index=None)
df5 = pd.DataFrame(test_loss)
df5.to_csv(result_path + 'test_loss.csv', header=None, index=None)
df6 = pd.DataFrame(['CLDNN', trial, np.mean(test_acc), np.mean(test_loss), elapsed, elapsed1/index])
df6.to_csv(result_path + 'result.csv', header=None, index=None)
# rows_sums = confusion_matrix.sum(axis=1)
# normalised_confusion_matrix = confusion_matrix/rows_sums[:, np.newaxis]
print(confusion_matrix)
print(trial)
print('CLDNN')
print('mean test accuracy: ', np.mean(test_acc))
print('mean test loss: ', np.mean(test_loss))
print('T_model: ', elapsed)
print('T_batch: ', elapsed1/index)
def main():
test()
if __name__ == '__main__':
main()