-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrunCNN.py
134 lines (102 loc) · 4.17 KB
/
runCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import os
import pandas as pd
import tensorflow as tf
import dataset
import model
trial = 3
n_channels = 64
save_path = 'checkpoints/cnn/trial'+str(trial)+'/'+str(n_channels)+'/'
lstm_size = 64 * 3 # 3 times the amount of channels
lstm_layers = 2 # Number of layers
batch_size = 80 # Batch size
seq_len = 160 # Number of steps
learning_rate = 0.00001
epochs = 100
n_hidden_1 = 200 # 1st layer number of neurons
n_hidden_2 = 200 # 2nd layer number of neurons
n_input = lstm_size
n_classes = 109
keep_prob = 0.5
train_acc = []
train_loss = []
def train():
tf.reset_default_graph()
sess = tf.Session()
keep_prob_ = tf.placeholder(tf.float32, name='keep')
learning_rate_ = tf.placeholder(tf.float32, name='learning_rate')
inputs, labels, total_count = dataset.csv_inputs(batch_size, epochs, n_classes, n_channels, seq_len, trial)
inputs = tf.cast(inputs, tf.float32)
labels = tf.cast(labels, tf.float32)
total_count = tf.cast(total_count, tf.float32)
logits = model.cnn_inference(inputs, keep_prob_, n_classes)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=labels))
tf.summary.scalar("cost", cost)
train_op = tf.train.AdamOptimizer(learning_rate_)
gradients = train_op.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients]
optimizer = train_op.apply_gradients(capped_gradients)
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
lg = tf.argmax(logits, 1)
ll = tf.argmax(labels, 1)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
summ = tf.summary.merge_all()
saver = tf.train.Saver()
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
#############################################################################
saver.restore(sess, tf.train.latest_checkpoint(save_path))
#############################################################################
writer_train = tf.summary.FileWriter(save_path+'train_accuracy/', sess.graph)
print("epoch looping")
index = 0
# Feed dictionary
feed = {keep_prob_: keep_prob, learning_rate_: learning_rate}
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
e = 0
loss_pre = 1000
try:
while not coord.should_stop():
index += 1
logits_val, labels_val, loss, _, acc, s_t, row_count = sess.run([lg, ll, cost, optimizer, accuracy, summ,
total_count], feed_dict=feed)
writer_train.add_summary(s_t, index)
train_acc.append(acc)
train_loss.append(loss)
if index % np.floor(row_count / batch_size) == 0:
e += 1
if loss < loss_pre:
saver.save(sess, save_path + 'save.ckpt')
loss_pre = loss
if loss < 0.0000001 and acc == 1:
print("Epoch: {}/{}".format(e, epochs),
"Iteration: {:d}".format(index),
"Train loss: {:.10f}".format(loss),
"Train acc: {:.4f}".format(acc))
saver.save(sess, save_path + 'save.ckpt')
break
# Print at each 1000 iterations
if index % 100 == 0:
print("Epoch: {}/{}".format(e, epochs),
"Iteration: {:d}".format(index),
"Train loss: {:.10f}".format(loss),
"Train acc: {:.4f}".format(acc))
except tf.errors.OutOfRangeError:
print('epoch reached!')
finally:
print("Epoch: {}/{}".format(e, epochs),
"Iteration: {:d}".format(index),
"Final train loss: {:.10f}".format(loss_pre))
coord.request_stop()
coord.join(threads)
sess.close()
# saver.restore(sess, tf.train.latest_checkpoint('checkpoints-CLDNN'))
def main():
train()
print('Done training!')
print(trial)
print('CNN')
if __name__ == '__main__':
main()