-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval.py
137 lines (115 loc) · 4.54 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import torch
import logging
from tqdm import tqdm
from sklearn.metrics import classification_report, confusion_matrix
from dataset import LABEL_DICT, get_data_loader
from model import MultimodalTransformer
def evaluate(model,
data_loader,
device):
loss = 0
y_true, y_pred = [], []
model.eval()
model.zero_grad()
loss_fct = torch.nn.CrossEntropyLoss()
iterator = tqdm(enumerate(data_loader), desc='eval_steps', total=len(data_loader))
for step, batch in iterator:
with torch.no_grad():
# unpack and set inputs
batch = map(lambda x: x.to(device) if x is not None else x, batch)
audios, a_mask, texts, t_mask, labels = batch
labels = labels.squeeze(-1).long()
y_true += labels.tolist()
# feed to model and get loss
logit, hidden = model(audios, texts, a_mask, t_mask)
cur_loss = loss_fct(logit, labels.view(-1))
loss += cur_loss.item()
y_pred += logit.max(dim=1)[1].tolist()
# evaluate with metrics
report = classification_report(
y_true, y_pred,
labels=list(range(len(LABEL_DICT))),
target_names=list(LABEL_DICT.keys()),
output_dict=True
)
cm = confusion_matrix(y_true, y_pred)
f1 = report['macro avg']['f1-score']
prec = report['macro avg']['precision']
rec = report['macro avg']['recall']
loss /= len(data_loader)
# logging
log_template = "{}\tF1: {:.4f}\tPREC: {:.4f}\tREC: {:.4f}"
logging.info(log_template.format("TOTAL", f1, prec, rec))
for key, value in report.items():
if key in LABEL_DICT:
cur_f1 = value['f1-score']
cur_prec = value['precision']
cur_rec = value['recall']
logging.info(log_template.format(key, cur_f1, cur_prec, cur_rec))
logging.info('\n'+str(cm))
return loss, f1
def main(args):
data_loader = get_data_loader(
args=args,
data_path=args.data_path,
bert_path=args.bert_path,
num_workers=args.num_workers,
batch_size=args.batch_size,
split=args.split
)
model = MultimodalTransformer(
n_layers=args.n_layers,
n_heads=args.n_heads,
n_classes=args.n_classes,
only_audio=args.only_audio,
only_text=args.only_text,
d_audio_orig=args.n_mfcc,
d_text_orig=768, # BERT hidden size
d_model=args.d_model,
attn_mask=args.attn_mask
).to(args.device)
model.load_state_dict(torch.load(args.model_path))
# evaluation
logging.info('evaluation starts')
model.zero_grad()
evaluate(model, data_loader, args.device)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# settings
parser.add_argument('--split', type=str, default='test')
parser.add_argument('--only_audio', action='store_true')
parser.add_argument('--only_text', action='store_true')
parser.add_argument('--data_path', type=str, default='./data')
parser.add_argument('--bert_path', type=str, default='./KoBERT')
parser.add_argument('--model_path', type=str, default='./practice/epoch1-loss3.2763-f10.4585.bin')
parser.add_argument('--n_classes', type=int, default=7)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=32)
# architecture
parser.add_argument('--n_layers', type=int, default=4)
parser.add_argument('--d_model', type=int, default=40)
parser.add_argument('--n_heads', type=int, default=10)
parser.add_argument('--attn_mask', action='store_false')
# data processing
parser.add_argument('--max_len_audio', type=int, default=400)
parser.add_argument('--sample_rate', type=int, default=48000)
parser.add_argument('--resample_rate', type=int, default=16000)
parser.add_argument('--n_fft_size', type=int, default=400)
parser.add_argument('--n_mfcc', type=int, default=40)
args_ = parser.parse_args()
# -------------------------------------------------------------- #
# check usage of modality
if args_.only_audio and args_.only_text:
raise ValueError("Please check your usage of modalities.")
# seed and device setting
device_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
args_.device = device_
# log setting
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO
)
main(args_)