-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
239 lines (201 loc) · 7.66 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import re
import html
import torch
import librosa
import logging
import pandas as pd
import numpy as np
from model import load_bert
from torchaudio.transforms import MFCC
from KoBERT.tokenization import BertTokenizer
from torch.utils.data import Dataset, DataLoader
LABEL_DICT = {
'공포': 0,
'놀람': 1,
'분노': 2,
'슬픔': 3,
'중립': 4,
'행복': 5,
'혐오': 6
}
def get_data_loader(args,
data_path,
bert_path,
num_workers,
batch_size,
split='train'):
logging.info(f"loading {split} dataset")
# paths
data_path = os.path.join(data_path, f'{split}.pkl')
vocab_path = os.path.join(bert_path, 'vocab.list')
bert_args_path = os.path.join(bert_path, 'args.bin')
# MultimodalDataset object
dataset = MultimodalDataset(
data_path=data_path,
vocab_path=vocab_path,
only_audio=args.only_audio,
only_text=args.only_text
)
# collate_fn
collate_fn = AudioTextBatchFunction(
args=args,
pad_idx=dataset.pad_idx,
cls_idx=dataset.cls_idx,
sep_idx=dataset.sep_idx,
bert_args=torch.load(bert_args_path),
device='cpu'
)
return DataLoader(
dataset=dataset,
shuffle=True if split == 'train' else False,
batch_size=batch_size,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
drop_last=True if split == 'train' else False
)
class MultimodalDataset(Dataset):
""" Adapted from original multimodal transformer code"""
def __init__(self,
data_path,
vocab_path,
only_audio=False,
only_text=False):
super(MultimodalDataset, self).__init__()
self.only_audio = only_audio
self.only_text = only_text
self.use_both = not (self.only_audio or self.only_text)
self.audio, self.text, self.labels = self.load_data(data_path)
self.tokenizer, self.vocab = self.load_vocab(vocab_path)
# special tokens
self.pad_idx = self.vocab['[PAD]']
self.cls_idx = self.vocab['[CLS]']
self.sep_idx = self.vocab['[SEP]']
self.mask_idx = self.vocab['[MASK]']
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
token_ids = None
if not self.only_audio:
tokens = self.normalize_string(self.text[idx])
tokens = self.tokenize(tokens)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
# ------------------------guideline------------------------------------
# naming as labels -> use to sampler
# float32 is required for mfcc function in torchaudio
# ---------------------------------------------------------------------
return self.audio[idx].astype(np.float32), token_ids, self.labels[idx]
def tokenize(self, tokens):
return self.tokenizer.tokenize(tokens)
@staticmethod
def normalize_string(s):
s = html.unescape(s)
s = re.sub(r"[\s]", r" ", s)
s = re.sub(r"[^a-zA-Z가-힣ㄱ-ㅎ0-9.!?]+", r" ", s)
return s
@staticmethod
def load_data(path):
data = pd.read_pickle(path)
text = data['sentence']
audio = data['audio']
label = [LABEL_DICT[e] for e in data['emotion']]
return audio, text, label
@staticmethod
def load_vocab(path):
tokenizer = BertTokenizer.from_pretrained(path, do_lower_case=False)
return tokenizer, tokenizer.vocab
class AudioTextBatchFunction:
def __init__(self,
args,
pad_idx,
cls_idx,
sep_idx,
bert_args,
device='cpu'):
self.device = device
self.only_audio = args.only_audio
self.only_text = args.only_text
self.use_both = not (self.only_audio or self.only_text)
# audio properties
self.max_len_audio = args.max_len_audio
self.n_mfcc = args.n_mfcc
self.n_fft_size = args.n_fft_size
self.sample_rate = args.sample_rate
self.resample_rate = args.resample_rate
# text properties
self.max_len_bert = bert_args.max_len
self.pad_idx = pad_idx
self.cls_idx = cls_idx
self.sep_idx = sep_idx
# audio feature extractor
if not self.only_text:
self.audio2mfcc = MFCC(
sample_rate=self.resample_rate,
n_mfcc=self.n_mfcc,
log_mels=False,
melkwargs={'n_fft': self.n_fft_size}
).to(self.device)
# text feature extractor
if not self.only_audio:
self.bert = load_bert(args.bert_path, self.device)
self.bert.eval()
self.bert.zero_grad()
def __call__(self, batch):
audios, sentences, labels = list(zip(*batch))
audio_emb, audio_mask, text_emb, text_mask = None, None, None, None
with torch.no_grad():
if not self.only_audio:
#max_len = min(self.max_len_bert, max([len(sent) for sent in sentences]))
max_len = self.max_len_bert
input_ids = torch.tensor([self.pad_with_text(sent, max_len) for sent in sentences])
text_masks = torch.ones_like(input_ids).masked_fill(input_ids == self.pad_idx, 0).bool()
text_emb, _ = self.bert(input_ids, text_masks)
if not self.only_text:
audio_emb, audio_mask = self.pad_with_mfcc(audios)
return audio_emb, audio_mask, text_emb, ~text_masks, torch.tensor(labels)
def _add_special_tokens(self, token_ids):
return [self.cls_idx] + token_ids + [self.sep_idx]
def pad_with_text(self, sentence, max_len):
sentence = self._add_special_tokens(sentence)
diff = max_len - len(sentence)
if diff > 0:
sentence += [self.pad_idx] * diff
else:
sentence = sentence[:max_len - 1] + [self.sep_idx]
return sentence
@staticmethod
def _trim(audio):
left, right = None, None
for idx in range(len(audio)):
if np.float32(0) != np.float32(audio[idx]):
left = idx
break
for idx in reversed(range(len(audio))):
if np.float32(0) != np.float32(audio[idx]):
right = idx
break
return audio[left:right + 1]
def pad_with_mfcc(self, audios):
#max_len = min(self.max_len_audio, max([len(audio) for audio in audios]))
max_len = self.max_len_audio
audio_array = torch.zeros(len(audios), self.n_mfcc, max_len).fill_(float('-inf'))
for idx, audio in enumerate(audios):
# resample and extract mfcc
audio = librosa.core.resample(audio, self.sample_rate, self.resample_rate)
mfcc = self.audio2mfcc(torch.tensor(self._trim(audio)).to(self.device))
# normalize
cur_mean, cur_std = mfcc.mean(dim=0), mfcc.std(dim=0)
mfcc = (mfcc - cur_mean) / cur_std
# save the extracted mfcc
cur_len = min(mfcc.shape[1], max_len)
audio_array[idx, :, :cur_len] = mfcc[:, :cur_len]
# (batch_size, n_mfcc, seq_len) -> (batch_size, seq_len, n_mfcc)
padded = audio_array.transpose(2, 1)
# get key mask
key_mask = padded[:, :, 0]
key_mask = key_mask.masked_fill(key_mask != float('-inf'), 0)
key_mask = key_mask.masked_fill(key_mask == float('-inf'), 1).bool()
# -inf -> 0.0
padded = padded.masked_fill(padded == float('-inf'), 0.)
return padded, key_mask