-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcompute_segmentations.py
304 lines (269 loc) · 9.94 KB
/
compute_segmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
import torch
import numpy as np
import scipy
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader
from PIL import Image
import imageio
import cv2
import os
from pathlib import Path
import tqdm
from utils.factory import create_model_and_transforms
from utils.imagenet_segmentation import ImagenetSegmentation
from utils.segmentation_utils import (
batch_pix_accuracy,
batch_intersection_union,
get_ap_scores,
Saver,
)
from sklearn.metrics import precision_recall_curve
from prs_hook import hook_prs_logger
# Args
def get_args_parser():
parser = argparse.ArgumentParser(description="Segmentation scores")
parser.add_argument("--save_img", action="store_true", default=False, help="")
parser.add_argument(
"--train_dataset",
type=str,
default="imagenet_seg",
help="The name of the dataset",
)
parser.add_argument(
"--classifier_dataset",
type=str,
default="imagenet",
help="The name of the classifier dataset",
)
parser.add_argument("--image_size", default=224, type=int, help="Image size")
parser.add_argument("--thr", type=float, default=0.0, help="threshold")
parser.add_argument(
"--data_path",
default="imagenet_seg/gtsegs_ijcv.mat",
type=str,
help="dataset path",
)
parser.add_argument("--num_workers", default=10, type=int)
parser.add_argument("--classifier_dir", default="./output_dir/")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size")
# Model parameters
parser.add_argument(
"--model",
default="ViT-H-14",
type=str,
metavar="MODEL",
help="Name of model to use",
)
parser.add_argument("--pretrained", default="laion2b_s32b_b79k", type=str)
parser.add_argument(
"--output_dir", default="./output_dir", help="path where to save"
)
parser.add_argument("--device", default="cuda:0", help="device to use for testing")
return parser
@torch.no_grad()
def eval_batch(model, prs, image, labels, index, args, classifier, saver):
# Save input image
if args.save_img:
# Saves one image from each batch
img = image[0].permute(1, 2, 0).data.cpu().numpy()
img = 255 * (img - img.min()) / (img.max() - img.min())
img = img.astype("uint8")
Image.fromarray(img, "RGB").save(
os.path.join(saver.results_dir, "input/{}_input.png".format(index))
)
Image.fromarray(
(labels.repeat(3, 1, 1).permute(1, 2, 0).data.cpu().numpy() * 255).astype(
"uint8"
),
"RGB",
).save(os.path.join(saver.results_dir, "input/{}_mask.png".format(index)))
# Get the model attention maps:
prs.reinit()
representation = model.encode_image(
image.to(args.device), attn_method="head", normalize=False
)
attentions, _ = prs.finalize(representation)
attentions = attentions.detach().cpu() # [b, l, n, h, d]
chosen_class = (representation.detach().cpu().numpy() @ classifier).argmax(axis=1)
patches = args.image_size // model.visual.patch_size[0]
attentions_collapse = attentions[:, :, 1:].sum(axis=(1, 3))
class_heatmap = (
attentions_collapse.detach().cpu().numpy() @ classifier
) # [b, n, classes]
results = []
for i in range(image.shape[0]):
normalized = class_heatmap[i, :, chosen_class[i]] - np.mean(
class_heatmap[i], axis=1
)
results.append(normalized)
results = torch.from_numpy(
np.stack(results, axis=0).reshape((attentions.shape[0], patches, patches))
)
Res = torch.nn.functional.interpolate(
results[:, np.newaxis], scale_factor=model.visual.patch_size[0], mode="bilinear"
).to(args.device)
Res = torch.clip(Res, 0, Res.max())
# threshold between FG and BG is the mean
Res = (Res - Res.min()) / (Res.max() - Res.min())
ret = Res.mean()
Res_1 = Res.gt(ret).type(Res.type())
Res_0 = Res.le(ret).type(Res.type())
Res_1_AP = Res
Res_0_AP = 1 - Res
Res_1[Res_1 != Res_1] = 0
Res_0[Res_0 != Res_0] = 0
Res_1_AP[Res_1_AP != Res_1_AP] = 0
Res_0_AP[Res_0_AP != Res_0_AP] = 0
# TEST
pred = Res.clamp(min=args.thr) / Res.max()
pred = pred.view(-1).data.cpu().numpy()
target = labels.view(-1).data.cpu().numpy()
output = torch.cat((Res_0, Res_1), 1)
output_AP = torch.cat((Res_0_AP, Res_1_AP), 1)
if args.save_img:
# Save predicted mask
mask = F.interpolate(Res_1, [args.image_size, args.image_size], mode="bilinear")
mask = mask[0].squeeze().data.cpu().numpy()
mask = 255 * mask
mask = mask.astype("uint8")
imageio.imsave(
os.path.join(args.exp_img_path, "mask_" + str(index) + ".jpg"), mask
)
relevance = F.interpolate(Res, [args.image_size, args.image_size], mode="bicubic")
relevance = relevance[0].permute(1, 2, 0).data.cpu().numpy()
hm = np.sum(relevance, axis=-1)
hm = np.clip(255.0 * hm / hm.max(), 0, 255.0).astype(np.uint8)
high = cv2.cvtColor(cv2.applyColorMap(hm, cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB)
imageio.imsave(
os.path.join(args.exp_img_path, "heatmap_" + str(index) + ".jpg"), high
)
# Evaluate Segmentation
batch_inter, batch_union, batch_correct, batch_label = 0, 0, 0, 0
batch_ap = 0
# Segmentation resutls
correct, labeled = batch_pix_accuracy(output[0].data.cpu(), labels[0])
inter, union = batch_intersection_union(output[0].data.cpu(), labels[0], 2)
batch_correct += correct
batch_label += labeled
batch_inter += inter
batch_union += union
ap = np.nan_to_num(get_ap_scores(output_AP, labels))
batch_ap += ap
return batch_correct, batch_label, batch_inter, batch_union, batch_ap, pred, target
def _create_saver_and_folders(args):
saver = Saver(args)
saver.results_dir = os.path.join(saver.experiment_dir, "results")
if not os.path.exists(saver.results_dir):
os.makedirs(saver.results_dir)
if not os.path.exists(os.path.join(saver.results_dir, "input")):
os.makedirs(os.path.join(saver.results_dir, "input"))
if not os.path.exists(os.path.join(saver.results_dir, "explain")):
os.makedirs(os.path.join(saver.results_dir, "explain"))
args.exp_img_path = os.path.join(saver.results_dir, "explain/img")
if not os.path.exists(args.exp_img_path):
os.makedirs(args.exp_img_path)
return saver
def main(args):
# Model
model, _, preprocess = create_model_and_transforms(
args.model, pretrained=args.pretrained
)
model.to(args.device)
model.eval()
context_length = model.context_length
vocab_size = model.vocab_size
print(
"Model parameters:",
f"{np.sum([int(np.prod(p.shape)) for p in model.parameters()]):,}",
)
print("Context length:", context_length)
print("Vocab size:", vocab_size)
print("Len of res:", len(model.visual.transformer.resblocks))
prs = hook_prs_logger(model, args.device)
# Data
target_transform = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size), Image.NEAREST),
]
)
ds = ImagenetSegmentation(
args.data_path, transform=preprocess, target_transform=target_transform
)
dl = DataLoader(
ds,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
drop_last=False,
)
iterator = tqdm.tqdm(dl)
# Saver
saver = _create_saver_and_folders(args)
# Classifier
with open(
os.path.join(
args.classifier_dir,
f"{args.classifier_dataset}_classifier_{args.model}.npy",
),
"rb",
) as f:
classifier = np.load(f)
# Eval in loop
total_inter, total_union, total_correct, total_label = (
np.int64(0),
np.int64(0),
np.int64(0),
np.int64(0),
)
total_ap = []
predictions, targets = [], []
for batch_idx, (image, labels) in enumerate(iterator):
images = image.to(args.device)
labels = labels.to(args.device)
correct, labeled, inter, union, ap, pred, target = eval_batch(
model, prs, images, labels, batch_idx, args, classifier, saver
)
predictions.append(pred)
targets.append(target)
total_correct += correct.astype("int64")
total_label += labeled.astype("int64")
total_inter += inter.astype("int64")
total_union += union.astype("int64")
total_ap += [ap]
pixAcc = (
np.float64(1.0)
* total_correct
/ (np.spacing(1, dtype=np.float64) + total_label)
)
IoU = (
np.float64(1.0)
* total_inter
/ (np.spacing(1, dtype=np.float64) + total_union)
)
mIoU = IoU.mean()
mAp = np.mean(total_ap)
iterator.set_description(
"pixAcc: %.4f, mIoU: %.4f, mAP: %.4f" % (pixAcc, mIoU, mAp)
)
predictions = np.concatenate(predictions)
targets = np.concatenate(targets)
pr, rc, thr = precision_recall_curve(targets, predictions)
np.save(os.path.join(saver.experiment_dir, "precision.npy"), pr)
np.save(os.path.join(saver.experiment_dir, "recall.npy"), rc)
txtfile = os.path.join(saver.experiment_dir, "result_mIoU_%.4f.txt" % mIoU)
fh = open(txtfile, "w")
print("Mean IoU over %d classes: %.4f\n" % (2, mIoU))
print("Pixel-wise Accuracy: %2.2f%%\n" % (pixAcc * 100))
print("Mean AP over %d classes: %.4f\n" % (2, mAp))
fh.write("Mean IoU over %d classes: %.4f\n" % (2, mIoU))
fh.write("Pixel-wise Accuracy: %2.2f%%\n" % (pixAcc * 100))
fh.write("Mean AP over %d classes: %.4f\n" % (2, mAp))
fh.close()
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)