-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathcompute_complete_text_set.py
189 lines (178 loc) · 6.26 KB
/
compute_complete_text_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import time
import numpy as np
import torch
from PIL import Image
import glob
import sys
import os
import einops
from torch.utils.data import DataLoader
import tqdm
import argparse
from torchvision.datasets import ImageNet
from pathlib import Path
from utils.misc import accuracy
@torch.no_grad()
def replace_with_iterative_removal(data, text_features, texts, iters, rank, device):
results = []
u, s, vh = np.linalg.svd(data, full_matrices=False)
vh = vh[:rank]
text_features = (
vh.T.dot(np.linalg.inv(vh.dot(vh.T)).dot(vh)).dot(text_features.T).T
) # Project the text to the span of W_OV
data = torch.from_numpy(data).float().to(device)
mean_data = data.mean(dim=0, keepdim=True)
data = data - mean_data
reconstruct = einops.repeat(mean_data, "A B -> (C A) B", C=data.shape[0])
reconstruct = reconstruct.detach().cpu().numpy()
text_features = torch.from_numpy(text_features).float().to(device)
for i in range(iters):
projection = data @ text_features.T
projection_std = projection.std(axis=0).detach().cpu().numpy()
top_n = np.argmax(projection_std)
results.append(texts[top_n])
text_norm = text_features[top_n] @ text_features[top_n].T
reconstruct += (
(
(data @ text_features[top_n] / text_norm)[:, np.newaxis]
* text_features[top_n][np.newaxis, :]
)
.detach()
.cpu()
.numpy()
)
data = data - (
(data @ text_features[top_n] / text_norm)[:, np.newaxis]
* text_features[top_n][np.newaxis, :]
)
text_features = (
text_features
- (text_features @ text_features[top_n] / text_norm)[:, np.newaxis]
* text_features[top_n][np.newaxis, :]
)
return reconstruct, results
def get_args_parser():
parser = argparse.ArgumentParser("Completeness part", add_help=False)
# Model parameters
parser.add_argument(
"--model",
default="ViT-H-14",
type=str,
metavar="MODEL",
help="Name of model to use",
)
# Dataset parameters
parser.add_argument("--num_workers", default=10, type=int)
parser.add_argument(
"--output_dir", default="./output_dir", help="path where data is saved"
)
parser.add_argument(
"--input_dir", default="./output_dir", help="path where data is saved"
)
parser.add_argument(
"--text_descriptions",
default="image_descriptions_per_class",
type=str,
help="name of the evalauted text set",
)
parser.add_argument(
"--text_dir",
default="./text_descriptions",
type=str,
help="The folder with the text files",
)
parser.add_argument(
"--dataset", type=str, default="imagenet", help="imagenet or waterbirds"
)
parser.add_argument(
"--num_of_last_layers",
type=int,
default=8,
help="How many attention layers to replace.",
)
parser.add_argument(
"--w_ov_rank", type=int, default=80, help="The rank of the OV matrix"
)
parser.add_argument(
"--texts_per_head",
type=int,
default=10,
help="The number of text examples per head.",
)
parser.add_argument("--device", default="cuda:0", help="device to use for testing")
return parser
def main(args):
with open(
os.path.join(args.input_dir, f"{args.dataset}_attn_{args.model}.npy"), "rb"
) as f:
attns = np.load(f) # [b, l, h, d]
with open(
os.path.join(args.input_dir, f"{args.dataset}_mlp_{args.model}.npy"), "rb"
) as f:
mlps = np.load(f) # [b, l+1, d]
with open(
os.path.join(args.input_dir, f"{args.dataset}_classifier_{args.model}.npy"),
"rb",
) as f:
classifier = np.load(f)
print(f"Number of layers: {attns.shape[1]}")
all_images = set()
# Mean-ablate the other parts
for i in tqdm.trange(attns.shape[1] - args.num_of_last_layers):
for head in range(attns.shape[2]):
attns[:, i, head] = np.mean(attns[:, i, head], axis=0, keepdims=True)
# Load text:
with open(
os.path.join(args.input_dir, f"{args.text_descriptions}_{args.model}.npy"), "rb"
) as f:
text_features = np.load(f)
with open(os.path.join(args.text_dir, f"{args.text_descriptions}.txt"), "r") as f:
lines = [i.replace("\n", "") for i in f.readlines()]
with open(
os.path.join(
args.output_dir,
f"{args.dataset}_completeness_{args.text_descriptions}_top_{args.texts_per_head}_heads_{args.model}.txt",
),
"w",
) as w:
for i in tqdm.trange(attns.shape[1] - args.num_of_last_layers, attns.shape[1]):
for head in range(attns.shape[2]):
results, images = replace_with_iterative_removal(
attns[:, i, head],
text_features,
lines,
args.texts_per_head,
args.w_ov_rank,
args.device,
)
attns[:, i, head] = results
all_images |= set(images)
w.write(f"------------------\n")
w.write(f"Layer {i}, Head {head}\n")
w.write(f"------------------\n")
for text in images:
w.write(f"{text}\n")
mean_ablated_and_replaced = mlps.sum(axis=1) + attns.sum(axis=(1, 2))
projections = torch.from_numpy(mean_ablated_and_replaced).float().to(
args.device
) @ torch.from_numpy(classifier).float().to(args.device)
labels = np.array([i // 50 for i in range(attns.shape[0])])
current_accuracy = (
accuracy(projections.cpu(), torch.from_numpy(labels))[0] * 100.0
)
print(
f"Current accuracy:",
current_accuracy,
"\nNumber of texts:",
len(all_images),
)
w.write(f"------------------\n")
w.write(
f"Current accuracy: {current_accuracy}\nNumber of texts: {len(all_images)}"
)
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)