You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
C:\.....\DoubleDIP\DoubleDIP-master>python watermarks_removal.py Traceback (most recent call last): File "watermarks_removal.py", line 567, in <module> remove_watermark_many_images(['f1'], [im1], "fotolia_many_images") File "watermarks_removal.py", line 544, in remove_watermark_many_images s.optimize() File "watermarks_removal.py", line 440, in optimize self._optimization_closure(j, step) File "watermarks_removal.py", line 502, in _optimization_closure self.watermark_net_output = self.watermark_net(watermark_net_input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\Documents\machine_learning\DoubleDIP\DoubleDIP-master\net\layers.py", line 54, in forward inputs.append(module_(input_)) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\conv.py", line 349, in forward return self._conv_forward(input, self.weight) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\conv.py", line 346, in _conv_forward self.padding, self.dilation, self.groups) RuntimeError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 4.00 GiB total capacity; 815.82 MiB already allocated; 0 bytes free; 2.42 GiB reserved in total by PyTorch)
On the web I found solutions like reducing the batch size, but in this case I can not find anything I could change to a lower value that might not take that much memory.
Any suggestion I could do?
The text was updated successfully, but these errors were encountered:
Error when running watermarks_removal.py:
C:\.....\DoubleDIP\DoubleDIP-master>python watermarks_removal.py Traceback (most recent call last): File "watermarks_removal.py", line 567, in <module> remove_watermark_many_images(['f1'], [im1], "fotolia_many_images") File "watermarks_removal.py", line 544, in remove_watermark_many_images s.optimize() File "watermarks_removal.py", line 440, in optimize self._optimization_closure(j, step) File "watermarks_removal.py", line 502, in _optimization_closure self.watermark_net_output = self.watermark_net(watermark_net_input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\Documents\machine_learning\DoubleDIP\DoubleDIP-master\net\layers.py", line 54, in forward inputs.append(module_(input_)) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\container.py", line 100, in forward input = module(input) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\conv.py", line 349, in forward return self._conv_forward(input, self.weight) File "C:\Users\youre\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\nn\modules\conv.py", line 346, in _conv_forward self.padding, self.dilation, self.groups) RuntimeError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 4.00 GiB total capacity; 815.82 MiB already allocated; 0 bytes free; 2.42 GiB reserved in total by PyTorch)
On the web I found solutions like reducing the batch size, but in this case I can not find anything I could change to a lower value that might not take that much memory.
Any suggestion I could do?
The text was updated successfully, but these errors were encountered: