-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2DOF_ShearBuild_LSTM_f.py
299 lines (238 loc) · 10.2 KB
/
2DOF_ShearBuild_LSTM_f.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""Import Dependencies"""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import scipy.io
import os
import joblib # save scaler
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dropout, Dense
from keras.optimizers import RMSprop, Adam
from keras.layers import LSTM, Activation # CuDNNLSTM
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model
import time
from random import shuffle
# # Setup GPU for training (use tensorflow v1.9 for CuDNNLSTM)
# os.environ['CUDA_VISIBLE_DEVICES'] = '0' # CPU:-1; GPU0: 1; GPU1: 0;
# Set the GPU device
# gpu_device = tf.config.list_physical_devices('GPU')
# tf.config.experimental.set_memory_growth(gpu_device[0], True)
"""Loading the Data from matlab already preprocessed or setted up data"""
# data directory
current_directory = os.getcwd() # Get the current directory
dataDir = os.path.dirname(current_directory) # Get the parent directory
# dataDir = os.getcwd()
# dataDir = r"C:\Users\aaziz\Documents\MATLAB\PhD Python Code\AASC_DeepLSTM" # Replace the directory
# mat folder ( matlab)
# mat = scipy.io.loadmat(dataDir + '/data/OLD_data/data_2DOF_SB_BWWN.mat')
mat = scipy.io.loadmat(dataDir + '/LSTMsForNonlinearStructuralSystems/data_2DOF_SB_BWWN.mat')
"""Known Data"""
# Get all data from "input_tf" input data: Dim: Number or Records x Time Steps x DOF (for input, earthquake so DOF = 1)
X_data = mat['input_tf']
# Get all output data from "input_tf" output data: Number or Records x Time Steps x DOF
y_data = mat['target_tf']
# Specify training indices to use for training the LSTM
train_indices = mat['trainInd'] - 1
# Specify testing indices to use for testing the LSTM
test_indices = mat['valInd'] - 1
# Flatten the Data: reshape by multiplying the dimensions, make it linear an array
X_data_flatten = np.reshape(X_data, [X_data.shape[0] * X_data.shape[1], 1])
# Create a MinMax Scaler between -1 and 1
scaler_X = MinMaxScaler(feature_range=(-1, 1))
# Fit the scaler_
scaler_X.fit(X_data_flatten)
# Transform through the scaler
X_data_flatten_map = scaler_X.transform(X_data_flatten)
# Reshape the data back to original dimension before scalling
X_data_map = np.reshape(X_data_flatten_map, [X_data.shape[0], X_data.shape[1], 1])
# Flatten the output data
y_data_flatten = np.reshape(y_data, [y_data.shape[0] * y_data.shape[1], y_data.shape[2]])
# Create a MinMax Scaler between -1 and 1 for y
scaler_y = MinMaxScaler(feature_range=(-1, 1))
# Fit the scaler_
scaler_y.fit(y_data_flatten)
# Transform through the scaler
y_data_flatten_map = scaler_y.transform(y_data_flatten)
# Reshape the data back to original dimension before scaling
y_data_map = np.reshape(y_data_flatten_map, [y_data.shape[0], y_data.shape[1], y_data.shape[2]])
# """UnKnown Data"""
#
# # New Data to Predict
# X_pred = mat['input_pred_tf']
# # Reference Solution or Recorded values
# y_pred_ref = mat['target_pred_tf']
# # Scaling Process
# X_pred_flatten = np.reshape(X_pred, [X_pred.shape[0] * X_pred.shape[1], 1])
# X_pred_flatten_map = scaler_X.transform(X_pred_flatten)
# X_pred_map = np.reshape(X_pred_flatten_map, [X_pred.shape[0], X_pred.shape[1], 1])
#
# y_pred_ref_flatten = np.reshape(y_pred_ref, [y_pred_ref.shape[0] * y_pred_ref.shape[1], y_pred_ref.shape[2]])
# y_pred_ref_flatten_map = scaler_y.transform(y_pred_ref_flatten)
# y_pred_ref_map = np.reshape(y_pred_ref_flatten_map, [y_pred_ref.shape[0], y_pred_ref.shape[1], y_pred_ref.shape[2]])
X_data_new = X_data_map
y_data_new = y_data_map
" SPECIFYING TRAINING DATA"
X_train = X_data_new[0:len(train_indices[0])]
y_train = y_data_new[0:len(train_indices[0])]
" SPECIFYING TESTING DATA"
X_test = X_data_new[len(train_indices[0]):]
y_test = y_data_new[len(train_indices[0]):]
# X_pred = X_pred_map
# y_pred_ref = y_pred_ref_map
" Number of Input features and Number of file_name_out features"
data_dim = X_train.shape[2] # number of input features
timesteps = X_train.shape[1]
num_classes = y_train.shape[2] # number of output features
batch_size = 5
# Optimizers to use
# rms = RMSprop(learning_rate=0.001, decay=0.0001)
# adam = Adam(learning_rate=0.001, decay=0.0001)
rms = RMSprop(learning_rate=0.001)
adam = Adam(learning_rate=0.001)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
"""SETTING UP THE LONG SHORT TERM MEMORY NN"""
# Type of model: Sequential
model = Sequential()
# LSTM first Layer: LSTM 1
model.add(LSTM(100, return_sequences=True, stateful=False, input_shape=(None, data_dim)))
# https://www.tensorflow.org/api_docs/python/tf/compat/v1/keras/layers/CuDNNLSTM
# Activation Layer (have relu)
model.add(Activation('relu'))
# model.add(Dropout(0.2))
# LSTM first Layer: LSTM 2
model.add(LSTM(100, return_sequences=True, stateful=False))
# Activation Layer (have relu)
model.add(Activation('relu'))
# model.add(Dropout(0.2))
# FC 1 : adds a fully connected layer with 100 neurons to the model.
model.add(Dense(100))
# model.add(Activation('relu'))
# FC 2 : adds a fully connected layer with 5 neurons to the model: SAME AS NDOF/num_classes etc
model.add(Dense(num_classes))
# Print Summary of the model
model.summary()
# Compiling the model
model.compile(loss='mean_squared_error', # categorical_crossentropy, mean_squared_error, mean_absolute_error
optimizer=adam, # RMSprop(), Adagrad, Nadam, Adagrad, Adadelta, Adam, Adamax,
metrics=['mse'])
best_loss = 100
train_loss = []
test_loss = []
history = []
# gpus = tf.config.list_physical_devices('GPU')
# if gpus:
# # Limit GPU memory growth
# tf.config.experimental.set_memory_growth(gpus[0], True)
# Configure TensorFlow to allow dynamic GPU memory growth
# gpus = tf.config.list_physical_devices('CPU')
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
# with tf.device('/device:GPU:1'):
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# session = tf.Session(config=config)
# # tf.Session(config=tf.ConfigProto(log_device_placement=True))
start = time.time()
# Setting the Number of Epochs
epochs = 10
# Model
dataSpec = "BWWNGATest"
# Strcuturre
structSpec = "2SSB"
strings = [dataSpec, structSpec, 'epochs', str(epochs)]
# Model Name
nameMod = "_".join(strings)
for e in range(epochs): # Loop through the epochs
# print the epoch number
print('epoch = ', e + 1)
# create a list number of samples
Ind = list(range(len(X_data_new)))
# shuffles this list
shuffle(Ind)
# create a split ratio ( 70% in this case)
ratio_split = 0.7
# Indice the train and testing
Ind_train = Ind[0:round(ratio_split * len(X_data_new))]
Ind_test = Ind[round(ratio_split * len(X_data_new)):]
X_train = X_data_new[Ind_train]
y_train = y_data_new[Ind_train]
X_test = X_data_new[Ind_test]
y_test = y_data_new[Ind_test]
# Fitting the model to the training Data
model.fit(X_train, y_train,
batch_size=batch_size,
# validation_split=0.2,
validation_data=(X_test, y_test),
shuffle=True,
epochs=1)
score0 = model.evaluate(X_train, y_train, batch_size=batch_size, verbose=0)
score = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0)
train_loss.append(score0[0])
test_loss.append(score[0])
if test_loss[e] < best_loss:
best_loss = test_loss[e]
model.save(dataDir + 'results/2DOF_SB (LSTM-f)/' + nameMod + '.h5')
end = time.time()
running_time = (end - start) / 3600
print('Running Time: ', running_time, ' hour')
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
A/B Testing
'''
def build_model_A(input_shape, output_shape):
model = Sequential()
model.add(LSTM(100, return_sequences=True, stateful=False, input_shape=input_shape))
model.add(Activation('relu'))
model.add(Dense(100))
model.add(Dense(output_shape))
model.compile(loss='mean_squared_error', optimizer=Adam(learning_rate=0.001), metrics=['mse'])
return model
def build_model_B(input_shape, output_shape):
model = Sequential()
model.add(LSTM(50, return_sequences=True, stateful=False, input_shape=input_shape))
model.add(Activation('tanh'))
model.add(LSTM(50, return_sequences=True, stateful=False))
model.add(Activation('tanh'))
model.add(Dense(50))
model.add(Dense(output_shape))
model.compile(loss='mean_squared_error', optimizer=RMSprop(learning_rate=0.001), metrics=['mse'])
return model
input_shape = (None, data_dim)
output_shape = num_classes
# initialization
model_A = build_model_A(input_shape, output_shape)
model_B = build_model_B(input_shape, output_shape)
# training
history_A = model_A.fit(X_train, y_train, batch_size=batch_size, epochs=10, validation_data=(X_test, y_test), shuffle=True)
history_B = model_B.fit(X_train, y_train, batch_size=batch_size, epochs=10, validation_data=(X_test, y_test), shuffle=True)
# eval
score_A = model_A.evaluate(X_test, y_test, batch_size=batch_size)
print(f'Model A - Test loss: {score_A[0]} / Test mse: {score_A[1]}')
score_B = model_B.evaluate(X_test, y_test, batch_size=batch_size)
print(f'Model B - Test loss: {score_B[0]} / Test mse: {score_B[1]}')
# '''
# Drift Detection
# '''
# def detect_drift(data, threshold=0.01):
# """
# using CUSUM
# """
# meanLoss = np.mean(data)
# pos = np.zeros(len(data))
# neg = np.zeros(len(data))
# theDrift = []
# for i in range(1, len(data)):
# pos[i] = max(0, pos[i-1] + (data[i] - meanLoss))
# neg[i] = min(0, neg[i-1] + (data[i] - meanLoss))
# if pos[i] > threshold or neg[i] < -threshold:
# theDrift.append(i)
# pos[i] = 0
# neg[i] = 0
# return theDrift