Skip to content

Latest commit

 

History

History
431 lines (385 loc) · 16.4 KB

README.md

File metadata and controls

431 lines (385 loc) · 16.4 KB

RapidUDF

RapidUDF is a high-performance SIMD vectorized expression/script computation execution engine library designed for online systems. It can be used in scenarios requiring high performance and flexibility such as rule engines, storage systems, and feature computation.

Limitations

  • C++17

Features

  • Easy to Use:
    • Provides support for conventional expression syntax
    • For more complex logic, supports a C-like DSL including if-elif-else* conditional control, while loop control, auto temporary variables, etc.;
    • For columnar memory data (vector), provides dynamic Table APIs similar to Spark's DataFrame and operations like filter/order_by/topk/take;
  • High Performance:
    • Based on LLVM JIT compilation, startup and execution performance comparable to native cpp implementation;
    • For columnar memory data (vector), provides SIMD vectorization acceleration implementation
  • Thread Safe:
    • State-less JIT-generated C methods are naturally thread-safe
  • FFI:
    • Supports zero-cost access to C++ defined class objects (custom classes/stl/protobufs/flatbuffers/...) in expressions/UDFs
    • Supports zero-cost calls to methods/class methods defined in C++ within expressions/UDFs
  • Rich Built-in Data Types, Operators, and Functions:

Compilation and Installation

Compilation requires a compiler that supports C++17

Bazel

Add in WORKSPACE:

    git_repository(
        name = "rapidudf",
        remote = "https://github.com/yinqiwen/rapidudf.git",
        commit = "...",
    )
    load("@rapidudf//:rapidudf.bzl", "rapidudf_workspace")
    rapidudf_workspace()

Add in the BUILD file for relevant code compilation rules:

cc_library(
    name = "mylib",
    srcs = ["mylib.cc"],
    hdrs = [
        "mylib.h",
    ],
    deps = [
        "@rapidudf",
    ],
)

CMake

First, compile and instal rapidudf

cd <rapidudf src dir>
mkdir build; cd build;
cmake ..
make install

Add the following to the CMake configuration of the related project:

find_package(rapidudf REQUIRED)
....
# link rapidudf
target_link_libraries(mylib PRIVATE rapidudf::rapidudf)

Example

Usage Overview

Simple Expression

#include "rapidudf/rapidudf.h"

int main() {
  // 1. If needed, set up rapidudf logger
  //   std::shared_ptr<spdlog::logger> mylogger;
  //   rapidudf::set_default_logger(mylogger);
  // 2. Expression string
  std::string expression = "x >= 1 && y < 10";
  // 3. Compile to generate Function, the generated Function object can be saved for subsequent repeated execution; compilation usually takes between 10ms-100ms;
  rapidudf::JitCompiler compiler;
  // CompileExpression's template parameters support multiple types, the first template parameter is the return type, the rest are function parameter types;
  // Variable names used in the expression need to be passed in as a parameter name list, otherwise compilation fails
  auto result = compiler.CompileExpression<bool, int, int>(expression, {"x", "y"});
  if (!result.ok()) {
    RUDF_ERROR("{}", result.status().ToString());
    return -1;
  }
  // 4. Execute function
  rapidudf::JitFunction<bool, int, int> f = std::move(result.value());
  bool v = f(2, 3);  // true
  v = f(0, 1);       // false
  return 0;
};

Simple UDF Script

Fibonacci function

#include "rapidudf/rapidudf.h"

int main() {
  // 1. If needed, can set up rapidudf logger
  //   std::shared_ptr<spdlog::logger> mylogger;
  //   rapidudf::set_default_logger(mylogger);
  // 2. UDF string
  std::string source = R"(
    int fib(int n) 
    { 
       if (n <= 1){
         return n; 
       }
       // Supports cpp // comments
       return fib(n - 1) + fib(n - 2);  // Recursive call
    } 
  )";
  // 3. Compile to generate Function, the generated Function object can be saved for subsequent repeated execution; compilation usually takes between 10ms-100ms;
  rapidudf::JitCompiler compiler;
  // CompileFunction's template parameters support multiple types, the first template parameter is the return type, the rest are function parameter types
  auto result = compiler.CompileFunction<int, int>(source);
  if (!result.ok()) {
    RUDF_ERROR("{}", result.status().ToString());
    return -1;
  }

  // 4. Execute function
  rapidudf::JitFunction<int, int> f = std::move(result.value());
  int n = 9;
  int x = f(n);  // 34
  RUDF_INFO("fib({}):{}", n, x);
  return 0;
};

Vector Calculation

#include "rapidudf/rapidudf.h"

using namespace rapidudf;
int main() {
  // 2. UDF string
  std::string source = R"(
    simd_vector<f32> boost_scores(Context ctx, simd_vector<string_view> location, simd_vector<f32> score) 
    { 
      auto boost=(location=="home"?2.0_f32:0_f32);
      return score*boost;
    } 
  )";

  // 3. Compile to generate Function, the generated Function object can be saved for subsequent use
  rapidudf::JitCompiler compiler;
  // CompileFunction's template parameters support multiple types, the first template parameter is the return type, the rest are function parameter types
  // 'rapidudf::Context' is a mandatory parameter involved in arena memory allocation in the simd implementation
  auto result =
      compiler.CompileFunction<simd::Vector<float>, rapidudf::Context&, simd::Vector<StringView>, simd::Vector<float>>(
          source);
  if (!result.ok()) {
    RUDF_ERROR("{}", result.status().ToString());
    return -1;
  }

  // 4.1 Test data, need to convert raw data into columnar data
  std::vector<float> scores;
  std::vector<std::string> locations;
  for (size_t i = 0; i < 4096; i++) {
    scores.emplace_back(1.1 + i);
    locations.emplace_back(i % 3 == 0 ? "home" : "other");
  }

  // 5. Execute function
  rapidudf::Context ctx;
  auto f = std::move(result.value());
  auto new_scores = f(ctx, ctx.NewSimdVector(locations), ctx.NewSimdVector(scores));
  for (size_t i = 0; i < new_scores.Size(); i++) {
    // RUDF_INFO("{}", new_scores[i]);
  }
  return 0;
};

Dynamic Vector Table

RapidUDF supports dynamically creating vector tables, allowing arbitrary computational operations on table columns (accelerated through SIMD) in expressions/UDFs; The table class also provides operations similar to Spark DataFrame, such as:

  • .filter(simd::Vector<Bit>) returns a new table instance filtered by condition
  • .order_by(simd::Vector<T> column, bool descending) returns a new table instance sorted by condition
  • .topk(simd::Vector<T> column, uint32_t k, bool descending) returns a new table instance with top k entries
#include "rapidudf/rapidudf.h"

using namespace rapidudf;
struct Student {
  std::string name;
  uint16_t age = 0;
  float score = 0;
  bool gender = false;
};
RUDF_STRUCT_FIELDS(Student, name, age, score, gender)
int main() {
  // 1. Create table schema
  auto schema =
      simd::TableSchema::GetOrCreate("Student", [](simd::TableSchema* s) { std::ignore = s->AddColumns<Student>(); });

  // 2. UDF string, table<TABLE_NAME> generic format where TABLE_NAME must match the previously created table schema name
  // table supports filter/order_by/topk/take, etc. operations
  std::string source = R"(
    table<Student> select_students(Context ctx, table<Student> x) 
    { 
       auto filtered = x.filter(x.score >90 && x.age<10);
       // Sort by score in descending order and take top 10
       return filtered.topk(filtered.score,10,true); 
    } 
  )";

  // 3. Compile to generate Function, the generated Function object can be saved for subsequent use
  rapidudf::JitCompiler compiler;
  // CompileFunction's template parameters support multiple types, the first template parameter is the return type, the rest are function parameter types
  auto result = compiler.CompileFunction<simd::Table*, Context&, simd::Table*>(source);
  if (!result.ok()) {
    RUDF_ERROR("{}", result.status().ToString());
    return -1;
  }
  auto f = std::move(result.value());

  // 4.1 Test data, need to convert raw data into columnar data
  std::vector<Student> students;
  for (size_t i = 0; i < 128; i++) {
    float score = (i + 1) % 150;
    uint16_t age = i % 5 + 8;
    bool gender = i % 2 == 0;
    students.emplace_back(Student{"test_" + std::to_string(i), age, score, gender});
  }
  // 4.2 Create table instance
  rapidudf::Context ctx;
  auto table = schema->NewTable(ctx);
  std::ignore = table->AddRows(students);

  // 5. Execute function
  auto result_table = f(ctx, table.get());
  auto result_scores = result_table->Get<float>("score").value();
  auto result_names = result_table->Get<StringView>("name").value();
  auto result_ages = result_table->Get<uint16_t>("age").value();
  auto result_genders = result_table->Get<Bit>("gender").value();
  for (size_t i = 0; i < result_scores.Size(); i++) {
    RUDF_INFO("name:{},score:{},age:{},gender:{}", result_names[i], result_scores[i], result_ages[i],
              result_genders[i] ? true : false);
  }
  return 0;
};

Dynamic Vector Table Based on Protobuf/Flatbuffers/Struct

RapidUDF can also create a table from Protobuf/Flatbuffers, avoiding the tedious process of creating a TableSchema. Building table instances can be done directly from arrays of Protobuf objects such as std::vector<T>, std::vector<const T*>, std::vector<T*>.

Here is an example of creating a vector table based on Protobuf;
Examples based on flatbuffers can be found in fbs_vector_table_udf;
Examples based on struct can be found in struct_vector_table_udf;

#include "rapidudf/examples/student.pb.h"
#include "rapidudf/rapidudf.h"

using namespace rapidudf;
int main() {
  // 1. Create table schema
  auto schema = simd::TableSchema::GetOrCreate(
      "Student", [](simd::TableSchema* s) { std::ignore = s->AddColumns<examples::Student>(); });

  // 2. UDF string
  std::string source = R"(
    table<Student> select_students(Context ctx, table<Student> x) 
    { 
       auto filtered = x.filter(x.score >90 && x.age<10);
       // Sort in descending order
       return filtered.topk(filtered.score,10, true); 
    } 
  )";

  // 3. Compile to generate Function, the generated Function object can be saved for subsequent use
  rapidudf::JitCompiler compiler;
  auto result = compiler.CompileFunction<simd::Table*, Context&, simd::Table*>(source);
  if (!result.ok()) {
    RUDF_ERROR("{}", result.status().ToString());
    return -1;
  }
  auto f = std::move(result.value());

  // 4.1 Test data
  std::vector<examples::Student> students;
  for (size_t i = 0; i < 150; i++) {
    examples::Student student;
    student.set_score((i + 1) % 150);
    student.set_name("test_" + std::to_string(i));
    student.set_age(i % 5 + 8);
    students.emplace_back(std::move(student));
  }
  // 4.2 Create table instance and populate data
  rapidudf::Context ctx;
  auto table = schema->NewTable(ctx);
  std::ignore = table->AddRows(students);

  // 5. Execute function
  auto result_table = f(ctx, table.get());
  // 5.1 Fetch columns
  auto result_scores = result_table->Get<float>("score").value();
  auto result_names = result_table->Get<StringView>("name").value();
  auto result_ages = result_table->Get<int32_t>("age").value();

  for (size_t i = 0; i < result_scores.Size(); i++) {
    RUDF_INFO("name:{},score:{},age:{}", result_names[i], result_scores[i], result_ages[i]);
  }
  return 0;
};

Compilation Cache

RapidUDF incorporates an LRU cache with keys as the string of expressions/UDFs. Users can retrieve compiled JitFunction objects from the cache to avoid parse/compile overhead each time they are used:

std::vector<int> vec{1, 2, 3};
  JitCompiler compiler;
  JsonObject json;
  json["key"] = 123;

  std::string content = R"(
    bool test_func(json x){
      return x["key"] == 123;
    }
  )";
  auto rc = GlobalJitCompiler::GetFunction<bool, const JsonObject&>(content);
  ASSERT_TRUE(rc.ok());
  auto f = std::move(rc.value());
  ASSERT_TRUE(f(json));
  ASSERT_FALSE(f.IsFromCache());  // 第一次编译

  rc = GlobalJitCompiler::GetFunction<bool, const JsonObject&>(content);
  ASSERT_TRUE(rc.ok());
  f = std::move(rc.value());
  ASSERT_TRUE(f(json));
  ASSERT_TRUE(f.IsFromCache());  //后续从cache中获取

More Examples and Usage

There are more examples for different scenarios in the tests code directory.

Performance

Comparison with Native C++

Since RapidUDF is based on LLVM Jit, it theoretically can achieve performance very close to native C++ code. Comparison results for compiling the Fibonacci method with O0:

Benchmark                     Time             CPU   Iterations
---------------------------------------------------------------
BM_rapidudf_fib_func      22547 ns        22547 ns        31060
BM_native_fib_func        38933 ns        38933 ns        17964

Fibonacci method GCC O2 compilation comparison results:

Benchmark                     Time             CPU   Iterations
---------------------------------------------------------------
BM_rapidudf_fib_func      22557 ns        22555 ns        31065
BM_native_fib_func        19246 ns        19239 ns        36395

Note: The Jit implementation currently uses the same jit compilation logic under O0/O2 compilation switches; theoretically, the generated code should be identical.

Vectorized Acceleration Scenarios

The following tests were run on a CPU that supports AVX2, with the compilation optimization flag O2, and an array length of 4099.

Complex Trigonometric Expression

The calculation is to execute the double array x + (cos(y - sin(2 / x * pi)) - sin(x - cos(2 * y / pi))) - y; theoretically, the acceleration ratio should be the multiple of the AVX2 register width to the double width, which is 4.
Actual results are as follows, showing that the acceleration ratio has exceeded 4 times, reaching 6.09:

Benchmark                               Time             CPU   Iterations
-------------------------------------------------------------------------
BM_rapidudf_expr_func              207713 ns       207648 ns         3362
BM_rapidudf_vector_expr_func        33962 ns        33962 ns        20594
BM_native_func                     207145 ns       207136 ns         3387

Wilson Ctr

Original function prototype:

float  wilson_ctr(float exp_cnt, float clk_cnt) {
  return std::log10(exp_cnt) *
         (clk_cnt / exp_cnt + 1.96 * 1.96 / (2 * exp_cnt) -
          1.96 / (2 * exp_cnt) * std::sqrt(4 * exp_cnt * (1 - clk_cnt / exp_cnt) * clk_cnt / exp_cnt + 1.96 * 1.96)) /
         (1 + 1.96 * 1.96 / exp_cnt);
}

Corresponding vector UDF script implementation:

    simd_vector<f32> wilson_ctr(Context ctx, simd_vector<f32> exp_cnt, simd_vector<f32> clk_cnt)
    {
       return log10(exp_cnt) *
         (clk_cnt / exp_cnt +  1.96 * 1.96 / (2 * exp_cnt) -
          1.96 / (2 * exp_cnt) * sqrt(4 * exp_cnt * (1 - clk_cnt / exp_cnt) * clk_cnt / exp_cnt + 1.96 * 1.96)) /
         (1 + 1.96 * 1.96 / exp_cnt);
    }

Theoretically, the acceleration ratio should be the multiple of the AVX2 register width to the float width, which is 8;
Actual results are as follows, showing that the acceleration ratio has exceeded 8 times, reaching 10.5:

Benchmark                               Time             CPU   Iterations
-------------------------------------------------------------------------
BM_native_wilson_ctr                69961 ns        69957 ns      9960
BM_rapidudf_vector_wilson_ctr       6661 ns         6659 ns       105270

Dependencies