-
Notifications
You must be signed in to change notification settings - Fork 798
/
cgan_wgan_classifier.py
146 lines (119 loc) · 4.9 KB
/
cgan_wgan_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os, sys
sys.path.append('utils')
from nets import *
from datas import *
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
# for test
def sample_y(m, n, ind):
y = np.zeros([m,n])
for i in range(m):
y[i, i%8] = 1
#y[:,7] = 1
#y[-1,0] = 1
return y
def concat(z,y):
return tf.concat([z,y],1)
class CGAN_Classifier(object):
def __init__(self, generator, discriminator, classifier, data):
self.generator = generator
self.discriminator = discriminator
self.classifier = classifier
self.data = data
# data
self.z_dim = self.data.z_dim
self.y_dim = self.data.y_dim # condition
self.size = self.data.size
self.channel = self.data.channel
self.X = tf.placeholder(tf.float32, shape=[None, self.size, self.size, self.channel])
self.z = tf.placeholder(tf.float32, shape=[None, self.z_dim])
self.y = tf.placeholder(tf.float32, shape=[None, self.y_dim])
# nets
self.G_sample = self.generator(concat(self.z, self.y))
self.D_real, _ = self.discriminator(self.X)
self.D_fake, _ = self.discriminator(self.G_sample, reuse = True)
self.C_real = self.classifier(self.X)
self.C_fake = self.classifier(self.G_sample, reuse = True)
# loss
self.D_loss = - tf.reduce_mean(self.D_real) + tf.reduce_mean(self.D_fake)
self.clip_D = [var.assign(tf.clip_by_value(var, -0.01, 0.01)) for var in self.discriminator.vars]
self.G_loss = - tf.reduce_mean(self.D_fake)
self.C_real_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.C_real, labels=self.y)) # real label
self.C_fake_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.C_fake, labels=self.y))
# solver
self.D_solver = tf.train.RMSPropOptimizer(learning_rate=2e-4).minimize(self.D_loss, var_list=self.discriminator.vars)
self.G_solver = tf.train.RMSPropOptimizer(learning_rate=2e-4).minimize(self.G_loss + self.C_fake_loss, var_list=self.generator.vars)
self.C_real_solver = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(self.C_real_loss, var_list=self.classifier.vars)
#self.C_fake_solver = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(self.C_fake_loss, var_list=self.generator.vars)
self.saver = tf.train.Saver()
gpu_options = tf.GPUOptions(allow_growth=True)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
def train(self, sample_dir, ckpt_dir='ckpt', training_epoches = 1000000, batch_size = 32):
fig_count = 0
self.sess.run(tf.global_variables_initializer())
for epoch in range(training_epoches):
# update D
n_d = 100 if epoch < 25 or (epoch+1) % 500 == 0 else 5
for _ in range(n_d):
X_b, y_b = self.data(batch_size)
self.sess.run(
[self.D_solver, self.clip_D],
feed_dict={self.X: X_b, self.y: y_b, self.z: sample_z(batch_size, self.z_dim)}
)
# update G
for _ in range(1):
self.sess.run(
self.G_solver,
feed_dict={self.y:y_b, self.z: sample_z(batch_size, self.z_dim)}
)
# update C
for _ in range(1):
# real label to train C
self.sess.run(
self.C_real_solver,
feed_dict={self.X: X_b, self.y: y_b})
'''
# fake img label to train G
self.sess.run(
self.C_fake_solver,
feed_dict={self.y: y_b, self.z: sample_z(batch_size, self.z_dim)})
'''
# save img, model. print loss
if epoch % 100 == 0 or epoch < 100:
D_loss_curr, C_real_loss_curr = self.sess.run(
[self.D_loss, self.C_real_loss],
feed_dict={self.X: X_b, self.y: y_b, self.z: sample_z(batch_size, self.z_dim)})
G_loss_curr, C_fake_loss_curr = self.sess.run(
[self.G_loss, self.C_fake_loss],
feed_dict={self.y: y_b, self.z: sample_z(batch_size, self.z_dim)})
print('Iter: {}; D loss: {:.4}; G_loss: {:.4}; C_real_loss: {:.4}; C_fake_loss: {:.4}'.format(epoch, D_loss_curr, G_loss_curr, C_real_loss_curr, C_fake_loss_curr))
if epoch % 1000 == 0:
y_s = sample_y(16, self.y_dim, fig_count%10)
samples = self.sess.run(self.G_sample, feed_dict={self.y: y_s, self.z: sample_z(16, self.z_dim)})
fig = self.data.data2fig(samples)
plt.savefig('{}/{}_{}.png'.format(sample_dir, str(fig_count).zfill(3), str(fig_count%10)), bbox_inches='tight')
fig_count += 1
plt.close(fig)
#if epoch % 2000 == 0:
# self.saver.save(self.sess, os.path.join(ckpt_dir, "cgan_classifier.ckpt"))
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
# save generated images
sample_dir = 'Samples/mnist_cgan_wgan_classifier'
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
# param
generator = G_conv_mnist()
discriminator = D_conv_mnist()
classifier = C_conv_mnist()
data = mnist()
# run
cgan_c = CGAN_Classifier(generator, discriminator, classifier, data)
cgan_c.train(sample_dir)