-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathtrain.py
30 lines (26 loc) · 1.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import argparse
import functools
from mvector.trainer import MVectorTrainer
from mvector.utils.utils import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('configs', str, 'configs/cam++.yml', '配置文件')
add_arg('data_augment_configs', str, 'configs/augmentation.yml', '数据增强配置文件')
add_arg("local_rank", int, 0, '多卡训练需要的参数')
add_arg("use_gpu", bool, True, '是否使用GPU训练')
add_arg("do_eval", bool, True, '训练时是否评估模型')
add_arg('save_model_path', str, 'models/', '模型保存的路径')
add_arg('log_dir', str, 'log/', '保存VisualDL日志文件的路径')
add_arg('resume_model', str, None, '恢复训练,当为None则不使用预训练模型')
add_arg('pretrained_model', str, None, '预训练模型的路径,当为None则不使用预训练模型')
args = parser.parse_args()
print_arguments(args=args)
# 获取训练器
trainer = MVectorTrainer(configs=args.configs,
use_gpu=args.use_gpu,
data_augment_configs=args.data_augment_configs)
trainer.train(save_model_path=args.save_model_path,
log_dir=args.log_dir,
resume_model=args.resume_model,
pretrained_model=args.pretrained_model,
do_eval=args.do_eval)