-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathengine.py
279 lines (235 loc) · 9.63 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from tqdm import tqdm
import torch
from utils import (
AverageMeter,
get_lr,
save_checkpoint,
save_single_predictions_as_images
)
from config import CFG
from ddp_utils import is_main_process
def train_one_epoch(epoch, iter_idx, model, train_loader, optimizer, lr_scheduler, vertex_loss_fn, perm_loss_fn, writer):
model.train()
vertex_loss_fn.train()
perm_loss_fn.train()
loss_meter = AverageMeter()
vertex_loss_meter = AverageMeter()
perm_loss_meter = AverageMeter()
loader = train_loader
if is_main_process():
loader = tqdm(train_loader, total=len(train_loader))
# prof = torch.profiler.profile(
# schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
# on_trace_ready=torch.profiler.tensorboard_trace_handler(f"runs/{CFG.EXPERIMENT_NAME}/logs/profiler"),
# record_shapes=True,
# with_stack=True
# )
# prof.start()
for x, y_mask, y_corner_mask, y, y_perm in loader:
x = x.to(CFG.DEVICE, non_blocking=True)
y = y.to(CFG.DEVICE, non_blocking=True)
y_perm = y_perm.to(CFG.DEVICE, non_blocking=True)
y_input = y[:, :-1]
y_expected = y[:, 1:]
preds, perm_mat = model(x, y_input)
if epoch < CFG.MILESTONE:
vertex_loss_weight = CFG.vertex_loss_weight
perm_loss_weight = 0.0
else:
vertex_loss_weight = CFG.vertex_loss_weight
perm_loss_weight = CFG.perm_loss_weight
vertex_loss = vertex_loss_weight*vertex_loss_fn(preds.reshape(-1, preds.shape[-1]), y_expected.reshape(-1))
perm_loss = perm_loss_weight*perm_loss_fn(perm_mat, y_perm)
loss = vertex_loss + perm_loss
optimizer.zero_grad(set_to_none=True)
loss.backward()
# nn.utils.clip_grad_norm_(model.module.parameters(), max_norm=0.1)
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
loss_meter.update(loss.item(), x.size(0))
vertex_loss_meter.update(vertex_loss.item(), x.size(0))
perm_loss_meter.update(perm_loss.item(), x.size(0))
lr = get_lr(optimizer)
if is_main_process():
loader.set_postfix(train_loss=loss_meter.avg, lr=f"{lr:.5f}")
writer.add_scalar('Running_logs/Train_Loss', loss_meter.avg, iter_idx)
writer.add_scalar('Running_logs/LR', lr, iter_idx)
# writer.add_image(f"Running_logs/input_images", torchvision.utils.make_grid(x), iter_idx)
# writer.add_graph(model, input_to_model=(x, y_input))
iter_idx += 1
# prof.step()
# prof.stop()
print(f"Total train loss: {loss_meter.avg}\n\n")
loss_dict = {
'total_loss': loss_meter.avg,
'vertex_loss': vertex_loss_meter.avg,
'perm_loss': perm_loss_meter.avg,
}
return loss_dict, iter_idx
def valid_one_epoch(epoch, model, valid_loader, vertex_loss_fn, perm_loss_fn):
print(f"\nValidating...")
model.eval()
vertex_loss_fn.eval()
perm_loss_fn.eval()
loss_meter = AverageMeter()
vertex_loss_meter = AverageMeter()
perm_loss_meter = AverageMeter()
loader = valid_loader
if is_main_process():
loader = tqdm(valid_loader, total=len(valid_loader))
with torch.no_grad():
for x, y_mask, y_corner_mask, y, y_perm in loader:
x = x.to(CFG.DEVICE, non_blocking=True)
y = y.to(CFG.DEVICE, non_blocking=True)
y_perm = y_perm.to(CFG.DEVICE, non_blocking=True)
y_input = y[:, :-1]
y_expected = y[:, 1:]
preds, perm_mat = model(x, y_input)
if epoch < CFG.MILESTONE:
vertex_loss_weight = CFG.vertex_loss_weight
perm_loss_weight = 0.0
else:
vertex_loss_weight = CFG.vertex_loss_weight
perm_loss_weight = CFG.perm_loss_weight
vertex_loss = vertex_loss_weight*vertex_loss_fn(preds.reshape(-1, preds.shape[-1]), y_expected.reshape(-1))
perm_loss = perm_loss_weight*perm_loss_fn(perm_mat, y_perm)
loss = vertex_loss + perm_loss
loss_meter.update(loss.item(), x.size(0))
vertex_loss_meter.update(vertex_loss.item(), x.size(0))
perm_loss_meter.update(perm_loss.item(), x.size(0))
loss_dict = {
'total_loss': loss_meter.avg,
'vertex_loss': vertex_loss_meter.avg,
'perm_loss': perm_loss_meter.avg,
}
return loss_dict
def train_eval(
model,
train_loader,
valid_loader,
test_loader,
tokenizer,
vertex_loss_fn,
perm_loss_fn,
optimizer,
lr_scheduler,
step,
writer
):
best_loss = float('inf')
best_metric = float('-inf')
iter_idx=CFG.START_EPOCH * len(train_loader)
epoch_iterator = range(CFG.START_EPOCH, CFG.NUM_EPOCHS)
if is_main_process():
epoch_iterator = tqdm(epoch_iterator)
for epoch in epoch_iterator:
if is_main_process():
print(f"\n\nEPOCH: {epoch + 1}\n\n")
if CFG.TRAIN_DDP:
train_loader.sampler.set_epoch(epoch)
valid_loader.sampler.set_epoch(epoch)
test_loader.sampler.set_epoch(epoch)
train_loss_dict, iter_idx = train_one_epoch(
epoch,
iter_idx,
model,
train_loader,
optimizer,
lr_scheduler if step=='batch' else None,
vertex_loss_fn,
perm_loss_fn,
writer
)
if is_main_process():
writer.add_scalar('Train_Losses/Total_Loss', train_loss_dict['total_loss'], epoch)
writer.add_scalar('Train_Losses/Vertex_Loss', train_loss_dict['vertex_loss'], epoch)
writer.add_scalar('Train_Losses/Perm_Loss', train_loss_dict['perm_loss'], epoch)
valid_loss_dict = valid_one_epoch(
epoch,
model,
valid_loader,
vertex_loss_fn,
perm_loss_fn,
) # TODO: add eval metrics to validation function?
if is_main_process():
print(f"Valid loss: {valid_loss_dict['total_loss']:.3f}\n\n")
if step=='epoch':
pass
# Save best validation loss epoch.
if valid_loss_dict['total_loss'] < best_loss and CFG.SAVE_BEST and is_main_process():
best_loss = valid_loss_dict['total_loss']
checkpoint = {
"state_dict": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": lr_scheduler.state_dict(),
"epochs_run": epoch,
"loss": train_loss_dict["total_loss"]
}
save_checkpoint(
checkpoint,
folder=f"runs/{CFG.EXPERIMENT_NAME}/logs/checkpoints/",
filename="best_valid_loss.pth"
)
# torch.save(model.state_dict(), 'best_valid_loss.pth')
print(f"Saved best val loss model.")
# Save latest checkpoint every epoch.
if CFG.SAVE_LATEST and is_main_process():
checkpoint = {
"state_dict": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": lr_scheduler.state_dict(),
"epochs_run": epoch,
"loss": train_loss_dict["total_loss"]
}
save_checkpoint(
checkpoint,
folder=f"runs/{CFG.EXPERIMENT_NAME}/logs/checkpoints/",
filename="latest.pth"
)
if (epoch + 1) % CFG.SAVE_EVERY == 0 and is_main_process():
checkpoint = {
"state_dict": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": lr_scheduler.state_dict(),
"epochs_run": epoch,
"loss": train_loss_dict["total_loss"]
}
save_checkpoint(
checkpoint,
folder=f"runs/{CFG.EXPERIMENT_NAME}/logs/checkpoints/",
filename=f"epoch_{epoch}.pth"
)
if is_main_process():
writer.add_scalar('Val_Losses/Total_Loss', valid_loss_dict['total_loss'], epoch)
writer.add_scalar('Val_Losses/Vertex_Loss', valid_loss_dict['vertex_loss'], epoch)
writer.add_scalar('Val_Losses/Perm_Loss', valid_loss_dict['perm_loss'], epoch)
# output examples to a folder
if (epoch + 1) % CFG.VAL_EVERY == 0 and is_main_process():
val_metrics_dict = save_single_predictions_as_images(
test_loader,
model,
tokenizer,
epoch,
writer,
folder=f"runs/{CFG.EXPERIMENT_NAME}/runtime_outputs/",
device=CFG.DEVICE
)
for metric, value in zip(val_metrics_dict.keys(), val_metrics_dict.values()):
print(f"{metric}: {value}")
# Save best single batch validation metric epoch.
if val_metrics_dict["miou"] > best_metric and CFG.SAVE_BEST and is_main_process():
best_metric = val_metrics_dict["miou"]
checkpoint = {
"state_dict": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": lr_scheduler.state_dict(),
"epochs_run": epoch,
"loss": train_loss_dict["total_loss"]
}
save_checkpoint(
checkpoint,
folder=f"runs/{CFG.EXPERIMENT_NAME}/logs/checkpoints/",
filename="best_valid_metric.pth"
)
print(f"Saved best val metric model.")