-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_nmt_twogate.py
52 lines (48 loc) · 1.76 KB
/
train_nmt_twogate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy
import os
from nmt_all_twogate import train
def main(job_id, params):
print(params)
validerr = train(saveto=params['model'][0],
reload_=params['reload'][0],
dim_word=params['dim_word'][0],
dim=params['dim'][0],
n_words=params['n-words'][0],
n_words_src=params['n-words'][0],
decay_c=params['decay-c'][0],
clip_c=params['clip-c'][0],
lrate=params['learning-rate'][0],
optimizer=params['optimizer'][0],
patience=1000,
maxlen=50,
batch_size=80,
valid_batch_size=80,
validFreq=5000,
dispFreq=500,
saveFreq=5000,
sampleFreq=5000,
datasets=['../data/train.query',
'../data/train.reply',
'../data/train.keywords'],
valid_datasets=[
'../data/dev.query',
'../data/dev.reply',
'../data/dev.keywords'],
dictionaries=[
'../data/dict.pkl',
'../data/dict.pkl'],
use_dropout=params['use-dropout'][0],
overwrite=False)
return validerr
if __name__ == '__main__':
main(0, {
'model': ['../model/model.npz'],
'dim_word': [610],
'dim': [1000],
'n-words': [63000],
'optimizer': ['adadelta'],
'decay-c': [0.],
'clip-c': [1.],
'use-dropout': [False],
'learning-rate': [0.0001],
'reload': [False]})