-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathdynamic_seq2seq_model.py
232 lines (198 loc) · 8.16 KB
/
dynamic_seq2seq_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# -*- coding:utf-8 -*-
import math
import numpy as np
import tensorflow as tf
import tensorflow.contrib.seq2seq as seq2seq
from tensorflow.contrib.layers import safe_embedding_lookup_sparse as embedding_lookup_unique
from tensorflow.contrib.rnn import LSTMCell, LSTMStateTuple, GRUCell
class DynamicSeq2seq():
'''
Dynamic_Rnn_Seq2seq with Tensorflow-1.0.0
args:
encoder_cell encoder结构
decoder_cell decoder结构
encoder_vocab_size encoder词典大小
decoder_vocab_size decoder词典大小
embedding_size embedd成的维度
bidirectional encoder的结构
True: encoder为双向LSTM
False: encoder为一般LSTM
attention decoder的结构
True: 使用attention模型
False: 一般seq2seq模型
控制输入数据格式
True: [time_steps, batch_size]
False: [batch_size, time_steps]
'''
PAD = 0
EOS = 2
UNK = 3
def __init__(self,
encoder_cell=tf.contrib.rnn.BasicLSTMCell(40),
decoder_cell=tf.contrib.rnn.BasicLSTMCell(40),
encoder_vocab_size=10,
decoder_vocab_size=5,
embedding_size=10,
attention=False,
debug=False,
time_major=False):
self.debug = debug
self.attention = attention
self.lstm_dims = 40
self.encoder_vocab_size = encoder_vocab_size
self.decoder_vocab_size = decoder_vocab_size
self.embedding_size = embedding_size
self.encoder_cell = encoder_cell
self.decoder_cell = decoder_cell
self.global_step = tf.Variable(-1, trainable=False)
self.max_gradient_norm = 5
#创建模型
self._make_graph()
def _make_graph(self):
# 创建占位符
self._init_placeholders()
# embedding层
self._init_embeddings()
# 判断是否为双向LSTM并创建encoder
self._init_bidirectional_encoder()
# 创建decoder,会判断是否使用attention模型
self._init_decoder()
# 计算loss及优化
self._init_optimizer()
def _init_placeholders(self):
self.encoder_inputs = tf.placeholder(
shape=(None, None),
dtype=tf.int32,
name='encoder_inputs',
)
self.decoder_targets = tf.placeholder(
shape=(None, None),
dtype=tf.int32,
name='decoder_targets'
)
self.batch_size = tf.shape(self.encoder_inputs)[0]
self.decoder_inputs = tf.concat([tf.ones(shape=[self.batch_size, 1], dtype=tf.int32), self.decoder_targets], 1)
self.decoder_labels = tf.concat([self.decoder_targets, tf.zeros(shape=[self.batch_size, 1], dtype=tf.int32)], 1)
used = tf.sign(tf.abs(self.encoder_inputs))
length = tf.reduce_sum(used, reduction_indices=1)
self.encoder_inputs_length = tf.cast(length, tf.int32)
used = tf.sign(tf.abs(self.decoder_labels))
length = tf.reduce_sum(used, reduction_indices=1)
self.decoder_targets_length = tf.cast(length, tf.int32)
def _init_embeddings(self):
with tf.variable_scope("embedding") as scope:
sqrt3 = math.sqrt(3)
initializer = tf.random_uniform_initializer(-sqrt3, sqrt3)
# encoder Embedding
embedding_encoder = tf.get_variable(
"embedding_encoder",
shape=[self.encoder_vocab_size, self.embedding_size],
initializer=initializer,
dtype=tf.float32
)
self.encoder_emb_inp = tf.nn.embedding_lookup(
embedding_encoder, self.encoder_inputs
)
# decoder Embedding
embedding_decoder = tf.get_variable(
"embedding_decoder",
shape=[self.decoder_vocab_size, self.embedding_size],
initializer=initializer,
dtype=tf.float32
)
self.embedding_decoder = embedding_decoder
self.decoder_emb_inp = tf.nn.embedding_lookup(
embedding_decoder, self.decoder_inputs
)
def _init_bidirectional_encoder(self):
'''
双向LSTM encoder
'''
# Build RNN cell
encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(self.lstm_dims)
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
encoder_cell, self.encoder_emb_inp,
sequence_length=self.encoder_inputs_length, time_major=False,
dtype=tf.float32
)
self.encoder_output = encoder_outputs
self.encoder_state = encoder_state
def _init_decoder(self):
# attention_states = tf.transpose(self.encoder_output, [1, 0, 2])
attention_states = self.encoder_output
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units=self.lstm_dims,
memory=attention_states,
)
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
self.decoder_cell, attention_mechanism,
attention_layer_size=self.lstm_dims
)
# Helper
helper = tf.contrib.seq2seq.TrainingHelper(
self.decoder_emb_inp,
self.decoder_targets_length+1,
time_major=False
)
projection_layer = tf.layers.Dense(self.decoder_vocab_size, use_bias=False)
init_state = decoder_cell.zero_state(self.batch_size, tf.float32).clone(cell_state=self.encoder_state)
# Decoder
decoder = tf.contrib.seq2seq.BasicDecoder(
cell=decoder_cell,
helper=helper,
initial_state=init_state,
output_layer=projection_layer
)
maximum_iterations = tf.round(tf.reduce_max(self.encoder_inputs_length) * 20)
# Dynamic decoding
outputs = tf.contrib.seq2seq.dynamic_decode(
decoder,
maximum_iterations=maximum_iterations
)
self.logits = outputs
# ------------Infer-----------------
# Helper
infer_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
self.embedding_decoder,
tf.fill([self.batch_size], 1), 2)
# Decoder
decoder = tf.contrib.seq2seq.BasicDecoder(
cell=decoder_cell,
helper=infer_helper,
initial_state=init_state,
output_layer=projection_layer
)
# Dynamic decoding
infer_outputs = tf.contrib.seq2seq.dynamic_decode(
decoder, maximum_iterations=maximum_iterations)
self.translations = infer_outputs[0][1]
def _init_optimizer(self):
# 整理输出并计算loss
mask = tf.sequence_mask(
tf.to_float(self.decoder_targets_length),
tf.to_float(tf.shape(self.decoder_labels)[1])
)
self.loss = tf.contrib.seq2seq.sequence_loss(
self.logits[0][0],
self.decoder_labels,
tf.to_float(mask)
)
# Calculate and clip gradients
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(
gradients, self.max_gradient_norm)
# Optimization
optimizer = tf.train.GradientDescentOptimizer(0.1)
update_step = optimizer.apply_gradients(zip(clipped_gradients, params))
self.train_op = update_step
self.saver = tf.train.Saver(tf.global_variables())
def run(self):
feed = {
self.encoder_inputs:[[2,1],[1,2],[2,3],[3,4],[4,5]],
self.decoder_targets:[[1,1],[1,1],[4,1],[3,1],[2,0]],
}
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(10000):
logits,_,loss = sess.run([self.logits, self.train_op, self.loss], feed_dict=feed)