|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | + |
| 4 | +__copyright__ = """ |
| 5 | +Copyright (C) 2025 Shawn Lin |
| 6 | +Copyright (C) 2025 University of Illinois Board of Trustees |
| 7 | +""" |
| 8 | + |
| 9 | +__license__ = """ |
| 10 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 11 | +of this software and associated documentation files (the "Software"), to deal |
| 12 | +in the Software without restriction, including without limitation the rights |
| 13 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 14 | +copies of the Software, and to permit persons to whom the Software is |
| 15 | +furnished to do so, subject to the following conditions: |
| 16 | +
|
| 17 | +The above copyright notice and this permission notice shall be included in |
| 18 | +all copies or substantial portions of the Software. |
| 19 | +
|
| 20 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 21 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 22 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 23 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 24 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 25 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 26 | +THE SOFTWARE. |
| 27 | +""" |
| 28 | + |
| 29 | + |
| 30 | +import sys |
| 31 | + |
| 32 | +import meshmode.mesh.generation as mgen |
| 33 | +import mpmath |
| 34 | +import numpy as np |
| 35 | +import pytest |
| 36 | +from meshmode.discretization import Discretization |
| 37 | +from meshmode.discretization.poly_element import ( |
| 38 | + InterpolatoryQuadratureSimplexGroupFactory, |
| 39 | +) |
| 40 | +from pytential import GeometryCollection, bind, sym |
| 41 | +from pytential.qbx import QBXLayerPotentialSource |
| 42 | + |
| 43 | +from arraycontext import ( |
| 44 | + ArrayContextFactory, |
| 45 | + PyOpenCLArrayContext, |
| 46 | + flatten, |
| 47 | + pytest_generate_tests_for_array_contexts, |
| 48 | +) |
| 49 | +from pytools.convergence import EOCRecorder |
| 50 | + |
| 51 | +from sumpy.array_context import ( # noqa: F401 |
| 52 | + PytestPyOpenCLArrayContextFactory, |
| 53 | + _acf, # pyright: ignore[reportUnusedImport] |
| 54 | +) |
| 55 | +from sumpy.expansion.local import AsymptoticDividingLineTaylorExpansion |
| 56 | +from sumpy.kernel import YukawaKernel |
| 57 | +from sumpy.qbx import LayerPotentialMatrixGenerator |
| 58 | + |
| 59 | + |
| 60 | +pytest_generate_tests = pytest_generate_tests_for_array_contexts([ |
| 61 | + PytestPyOpenCLArrayContextFactory, |
| 62 | + ]) |
| 63 | + |
| 64 | + |
| 65 | +def asym_yukawa(dim, lam=None): |
| 66 | + """Asymptotic function of the Yukawa kernel.""" |
| 67 | + from pymbolic import primitives, var |
| 68 | + |
| 69 | + from sumpy.symbolic import SpatialConstant, pymbolic_real_norm_2 |
| 70 | + |
| 71 | + b = pymbolic_real_norm_2(primitives.make_sym_vector("b", dim)) |
| 72 | + |
| 73 | + if lam: |
| 74 | + expr = var("exp")(-lam * b * (1 - var("tau"))) |
| 75 | + else: |
| 76 | + lam = SpatialConstant("lam") |
| 77 | + expr = var("exp")(-lam * b * (1 - var("tau"))) |
| 78 | + return expr |
| 79 | + |
| 80 | + |
| 81 | +def utrue(lam, r, tau, targets_h, f_mode, side): |
| 82 | + """Test convergence of QBMAX (asymptotic Yukawa expansion) on a unit circle |
| 83 | + with density φ(y) = exp(imθ_y)""" |
| 84 | + mpmath.mp.dps = 25 |
| 85 | + |
| 86 | + angles = np.arctan2(targets_h[1, :], targets_h[0, :]) |
| 87 | + n_points = len(angles) |
| 88 | + result = np.zeros(n_points, dtype=np.complex128) |
| 89 | + |
| 90 | + for i in range(n_points): |
| 91 | + r_i = float(r[i]) |
| 92 | + |
| 93 | + if side == -1: |
| 94 | + coeff = float(mpmath.besselk(f_mode, lam) * |
| 95 | + mpmath.besseli(f_mode, lam * (1 - (1 - tau) * r_i))) |
| 96 | + else: |
| 97 | + coeff = float(mpmath.besseli(f_mode, lam) * |
| 98 | + mpmath.besselk(f_mode, lam * (1 + (1 - tau) * r_i))) |
| 99 | + |
| 100 | + result[i] = coeff * np.exp(1j * f_mode * angles[i]) |
| 101 | + |
| 102 | + return result |
| 103 | + |
| 104 | + |
| 105 | +def test_qbmax_yukawa_convergence( |
| 106 | + actx_factory: ArrayContextFactory, |
| 107 | + ): |
| 108 | + """Test convergence of QBMAX (asymptotic Yukawa expansion) for various τ values.""" |
| 109 | + actx = actx_factory() |
| 110 | + if not isinstance(actx, PyOpenCLArrayContext): |
| 111 | + pytest.skip() |
| 112 | + |
| 113 | + lam = 15 |
| 114 | + f_mode = 7 |
| 115 | + nelements = [20, 40, 60] |
| 116 | + qbx_order = 4 |
| 117 | + target_order = 5 |
| 118 | + upsampling_factor = 5 |
| 119 | + extra_kwargs = {"lam": lam} |
| 120 | + |
| 121 | + knl = YukawaKernel(2) |
| 122 | + asym_knl = asym_yukawa(2) |
| 123 | + |
| 124 | + rng = np.random.default_rng(seed=42) |
| 125 | + t = rng.uniform(0, 1, 10) |
| 126 | + targets_h = np.array([np.cos(2 * np.pi * t), np.sin(2 * np.pi * t)]) |
| 127 | + targets = actx.from_numpy(targets_h) |
| 128 | + |
| 129 | + for tau in [0, 0.5, 1]: |
| 130 | + eoc_in = EOCRecorder() |
| 131 | + eoc_out = EOCRecorder() |
| 132 | + |
| 133 | + asym_expn = AsymptoticDividingLineTaylorExpansion( |
| 134 | + knl, asym_knl, qbx_order, tau=tau) |
| 135 | + |
| 136 | + for nelement in nelements: |
| 137 | + mesh = mgen.make_curve_mesh( |
| 138 | + mgen.circle, np.linspace(0, 1, nelement+1), target_order) |
| 139 | + pre_density_discr = Discretization( |
| 140 | + actx, mesh, |
| 141 | + InterpolatoryQuadratureSimplexGroupFactory(target_order)) |
| 142 | + |
| 143 | + qbx = QBXLayerPotentialSource( |
| 144 | + pre_density_discr, |
| 145 | + upsampling_factor * target_order, |
| 146 | + qbx_order, |
| 147 | + fmm_order=False) |
| 148 | + |
| 149 | + places = GeometryCollection({"qbx": qbx}, auto_where=("qbx")) |
| 150 | + |
| 151 | + source_discr = places.get_discretization( |
| 152 | + "qbx", sym.QBX_SOURCE_QUAD_STAGE2) |
| 153 | + sources = source_discr.nodes() |
| 154 | + sources_h = actx.to_numpy(flatten(sources, actx)).reshape(2, -1) |
| 155 | + |
| 156 | + dofdesc = sym.DOFDescriptor("qbx", sym.QBX_SOURCE_QUAD_STAGE2) |
| 157 | + weights_nodes = bind( |
| 158 | + places, |
| 159 | + sym.weights_and_area_elements( |
| 160 | + ambient_dim=2, dim=1, dofdesc=dofdesc))(actx) |
| 161 | + weights_nodes_h = actx.to_numpy(flatten(weights_nodes, actx)) |
| 162 | + |
| 163 | + angle = np.arctan2(sources_h[1, :], sources_h[0, :]) |
| 164 | + sigma = np.exp(1j * f_mode * angle) * weights_nodes_h |
| 165 | + |
| 166 | + expansion_radii_h = np.ones(targets_h.shape[1]) * np.pi / nelement |
| 167 | + centers_in = actx.from_numpy((1 - expansion_radii_h) * targets_h) |
| 168 | + centers_out = actx.from_numpy((1 + expansion_radii_h) * targets_h) |
| 169 | + |
| 170 | + mat_asym_gen = LayerPotentialMatrixGenerator( |
| 171 | + actx.context, |
| 172 | + expansion=asym_expn, |
| 173 | + source_kernels=(knl,), |
| 174 | + target_kernels=(knl,)) |
| 175 | + |
| 176 | + _, (mat_asym_in,) = mat_asym_gen( |
| 177 | + actx.queue, |
| 178 | + targets=targets, |
| 179 | + sources=actx.from_numpy(sources_h), |
| 180 | + expansion_radii=expansion_radii_h, |
| 181 | + centers=centers_in, |
| 182 | + **extra_kwargs) |
| 183 | + |
| 184 | + mat_asym_in = actx.to_numpy(mat_asym_in) |
| 185 | + weighted_mat_asym_in = mat_asym_in * sigma[None, :] |
| 186 | + asym_eval_in = (np.sum(weighted_mat_asym_in, axis=1) * |
| 187 | + np.exp(-lam * expansion_radii_h * (1 - tau))) |
| 188 | + |
| 189 | + _, (mat_asym_out,) = mat_asym_gen( |
| 190 | + actx.queue, |
| 191 | + targets=targets, |
| 192 | + sources=actx.from_numpy(sources_h), |
| 193 | + expansion_radii=expansion_radii_h, |
| 194 | + centers=centers_out, |
| 195 | + **extra_kwargs) |
| 196 | + |
| 197 | + mat_asym_out = actx.to_numpy(mat_asym_out) |
| 198 | + weighted_mat_asym_out = mat_asym_out * sigma[None, :] |
| 199 | + asym_eval_out = (np.sum(weighted_mat_asym_out, axis=1) * |
| 200 | + np.exp(-lam * expansion_radii_h * (1 - tau))) |
| 201 | + |
| 202 | + utrue_in = utrue(lam, expansion_radii_h, tau, targets_h, f_mode, -1) |
| 203 | + utrue_out = utrue(lam, expansion_radii_h, tau, targets_h, f_mode, 1) |
| 204 | + |
| 205 | + err_in = (np.max(np.abs(asym_eval_in - utrue_in)) / |
| 206 | + np.max(np.abs(utrue_in))) |
| 207 | + err_out = (np.max(np.abs(asym_eval_out - utrue_out)) / |
| 208 | + np.max(np.abs(utrue_out))) |
| 209 | + |
| 210 | + h_max = actx.to_numpy( |
| 211 | + bind(places, sym.h_max(places.ambient_dim))(actx)) |
| 212 | + |
| 213 | + eoc_in.add_data_point(h_max, err_in) |
| 214 | + eoc_out.add_data_point(h_max, err_out) |
| 215 | + |
| 216 | + assert eoc_in.order_estimate() > qbx_order, \ |
| 217 | + f"Interior convergence too slow: {eoc_in.order_estimate()}" |
| 218 | + |
| 219 | + assert eoc_out.order_estimate() > qbx_order, \ |
| 220 | + f"Exterior convergence too slow: {eoc_out.order_estimate()}" |
| 221 | + |
| 222 | + |
| 223 | +if __name__ == "__main__": |
| 224 | + if len(sys.argv) > 1: |
| 225 | + exec(sys.argv[1]) |
| 226 | + else: |
| 227 | + pytest.main([__file__]) |
0 commit comments