-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
47 lines (35 loc) · 1.85 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
import torch.nn.functional as F
class L_spa(nn.Module):
def __init__(self):
super(L_spa, self).__init__()
kernel_left = torch.FloatTensor( [[0,0,0],[-1,1,0],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
kernel_right = torch.FloatTensor( [[0,0,0],[0,1,-1],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
kernel_up = torch.FloatTensor( [[0,-1,0],[0,1, 0 ],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
kernel_down = torch.FloatTensor( [[0,0,0],[0,1, 0],[0,-1,0]]).cuda().unsqueeze(0).unsqueeze(0)
self.weight_left = nn.Parameter(data=kernel_left, requires_grad=False)
self.weight_right = nn.Parameter(data=kernel_right, requires_grad=False)
self.weight_up = nn.Parameter(data=kernel_up, requires_grad=False)
self.weight_down = nn.Parameter(data=kernel_down, requires_grad=False)
self.pool = nn.AvgPool2d(4)
def forward(self, org , enhance):
b,c,h,w = org.shape
org_mean = torch.mean(org,1,keepdim=True)
enhance_mean = torch.mean(enhance,1,keepdim=True)
org_pool = self.pool(org_mean)
enhance_pool = self.pool(enhance_mean)
D_org_left = F.conv2d(org_pool , self.weight_left, padding=1)
D_org_right = F.conv2d(org_pool , self.weight_right, padding=1)
D_org_up = F.conv2d(org_pool , self.weight_up, padding=1)
D_org_down = F.conv2d(org_pool , self.weight_down, padding=1)
D_enhance_left = F.conv2d(enhance_pool , self.weight_left, padding=1)
D_enhance_right = F.conv2d(enhance_pool , self.weight_right, padding=1)
D_enhance_up = F.conv2d(enhance_pool , self.weight_up, padding=1)
D_enhance_down = F.conv2d(enhance_pool , self.weight_down, padding=1)
D_left = torch.pow(D_org_left - D_enhance_left,2)
D_right = torch.pow(D_org_right - D_enhance_right,2)
D_up = torch.pow(D_org_up - D_enhance_up,2)
D_down = torch.pow(D_org_down - D_enhance_down,2)
E = D_left + D_right + D_up + D_down
return E