-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
274 lines (227 loc) · 10.7 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from functools import reduce
import pandas as pd
import os
import numpy as np
import torch
from torch.utils.data import Dataset
from utools.comm_utils import amino_seq_to_one_hot
import json
import re
from torch.utils.data.sampler import WeightedRandomSampler
def _make_balanced_sampler(labels):
class_counts = np.bincount(labels)
class_weights = 1. / class_counts
weights = class_weights[labels]
return WeightedRandomSampler(weights, len(weights))
max_antibody_len={
'HIV': 676, #676 for baseline
'AVIDa_hIL6':66,
'CoVAbDab': 676, #441
'SAbDab': 110
}
max_antigen_len = {
'HIV': 912,
'AVIDa_hIL6':218,
'CoVAbDab': 912,
'SAbDab': 800
}
def return_dataset(cfg,dataFolder):
cfg.protein.max_antibody_len=max_antibody_len[cfg.set.dataset]
cfg.protein.max_antigen_len=max_antigen_len[cfg.set.dataset]
if cfg.set.dataset!='SAbDab':
dataset={
'HIV':load_dataset,
'AVIDa_hIL6':load_dataset,
'CoVAbDab':load_dataset,
}
#
return dataset[cfg.set.dataset](cfg, dataFolder)
def k_fold_dataset(cfg, dataFolder,k):
"""
neutralising/ab_ag_pair.csv unique ab 7496 ,unique ag 49, positive 10564 ,negtive 13493
binding/ab_ag_pair.csv unique ab 11263,unique ag 72, positive 24795 ,negtive 3821
:param cfg:
:param dataFolder:
:return:
"""
pair_data = pd.read_csv((os.path.join(dataFolder, 'ab_ag_pair.csv')))
train_data = pd.read_csv((os.path.join(dataFolder,'kfold', f'train_fold_{k}.csv')))
test_data = pd.read_csv((os.path.join(dataFolder,'kfold', f'test_fold_{k}.csv')))
unique_instance_label = pair_data.instance_label.unique()
train_instance_label = train_data.instance_label.unique()
print(f"train data {train_data.shape[0]}")
print(f"test data {test_data.shape[0]}")
test_instance_label = np.setdiff1d(unique_instance_label, train_instance_label)
train_dataset = PairDataset(train_data, dataFolder, cfg)
test_dataset = PairDataset(test_data, dataFolder, cfg)
return train_dataset,test_dataset,train_instance_label,test_instance_label
def load_dataset(cfg, dataFolder):
"""
neutralising/ab_ag_pair.csv unique ab 7496 ,unique ag 49, positive 10564 ,negtive 13493
binding/ab_ag_pair.csv unique ab 11263,unique ag 72, positive 24795 ,negtive 3821
:param cfg:
:param dataFolder:
:return:
"""
task = cfg.set.unseen_task
pair_data = pd.read_csv(os.path.join(dataFolder, f'ab_ag_pair.csv'))
unique_ab_id = pair_data.ab_id.unique()
unique_ag_id = pair_data.ag_id.unique()
train_data=pd.read_csv(os.path.join(dataFolder+f'{task}', f'train_seed_{cfg.solver.seed}.csv'))
val_data=pd.read_csv(os.path.join(dataFolder+f'{task}', f'val_seed_{cfg.solver.seed}.csv'))
# test_data=pd.read_csv(os.path.join(dataFolder+f'{task}', f'test_seed_{cfg.solver.seed}.csv'))
print(f"Train number {train_data.shape[0]}")
print(f"Valid number {val_data.shape[0]}")
if task != 'transfer':
unseen_data=pd.read_csv(os.path.join(dataFolder+f'{task}', f'unseen_seed_{cfg.solver.seed}.csv'))
print(f"Unseen number {unseen_data.shape[0]}")
else:
unseen_data = None
train_dataset = PairDataset(train_data, dataFolder, cfg)
val_dataset = PairDataset(val_data, dataFolder, cfg)
# test_dataset = PairDataset(test_data, dataFolder, cfg)
if isinstance(unseen_data, pd.DataFrame):
unseen_dataset = PairDataset(unseen_data, dataFolder, cfg)
else:
unseen_dataset = None
return train_dataset, val_dataset, unseen_dataset
class PairDataset(Dataset):
def __init__(self, pair_data,dataFolder,cfg):
"""
:param pair_data:
:param max_ab_length: HIV:271 ag20:155
:param max_ag_length: HIV:912 ag20:460
"""
self.pair_data = pair_data
self.cfg=cfg
self.max_ab_length = cfg.protein.max_antibody_len
self.max_ag_length = cfg.protein.max_antigen_len
self.ag_id = list(set(pair_data['ag_id'].to_list()))
self.label = pair_data['label'].to_list()
self.ab_seq = pd.read_csv(dataFolder + 'antibody.csv') # 1786462
self.ag_seq = pd.read_csv(dataFolder + 'antigen.csv') # 1786462
self.ab_token_ft_mat = torch.load(dataFolder + f'{cfg.set.ab_model}_token_ft.pt')
self.ag_token_ft_mat = torch.load(dataFolder + f'ag_token_ft.pt')
def __len__(self):
return self.pair_data.shape[0]
def __getitem__(self, index):
ab_id=self.pair_data.iloc[index]['ab_id']
ag_id=self.pair_data.iloc[index]['ag_id']
if self.cfg.set.dataset in ['SAbDab', 'AVIDa_hIL6']:
key = 'ab_cdr'
else:
key = 'ab_seq'
ab_seq=self.ab_seq.iloc[ab_id][key]
ab_seq=ab_seq.replace(' ','')
ab_seq = re.sub(r"[UZOBJ?*X]", "", ab_seq)
ag_seq=self.ag_seq.iloc[ag_id]['ag_seq']
ag_seq = ag_seq.replace(' ', '')
ag_seq = re.sub(r"[UZOBJ?*X]", "", ag_seq)
label = self.pair_data.iloc[index]['label']
input_data = {'ab_id': ab_id, 'ag_id': ag_id, 'label': label,'ag_len':len(ag_seq),'ab_len':len(ab_seq)}
ab_token_ft = self.ab_token_ft_mat[ab_id]
ag_token_ft = self.ag_token_ft_mat[ag_id]
ab_mask = torch.zeros(ab_token_ft.shape[0])
ag_mask = torch.zeros(ag_token_ft.shape[0])
ab_mask[:len(ab_seq)] = 1
ag_mask[:len(ag_seq)] = 1
attention_mask = torch.outer(ab_mask,ag_mask)
input_data.update({'ab_token_ft': ab_token_ft, 'ag_token_ft': ag_token_ft,'ab_mask':ab_mask,'ag_mask':ag_mask,'attention_mask':attention_mask})
return input_data
class SiteDataset(Dataset):
def __init__(self, dataFolder,index):
"""
:param pair_data:
:param max_ab_length: HIV:271
:param max_ag_length: HIV:912
"""
map_index = pd.read_csv(f'{dataFolder}/map_index.csv')
self.map_index = map_index.iloc[index]
self.index = index
self.site_label = json.load(open(f'{dataFolder}/site_label.json', 'r'))
self.site_ag_token = torch.load(f'{dataFolder}/site_ag_token.pt')[index]
self.site_ab_token = torch.load(f'{dataFolder}/site_ab_token.pt')[index]
self.site_ag_mask = torch.load(f'{dataFolder}/site_ag_mask.pt')[index]
self.site_ab_mask = torch.load(f'{dataFolder}/site_ab_mask.pt')[index]
def __len__(self):
return len(self.map_index)
def __getitem__(self, index):
key = self.map_index.iloc[index]['key']
ab_token_ft = self.site_ab_token[index]
ag_token_ft = self.site_ag_token[index]
ag_mask, ab_mask = self.site_ag_mask[index], self.site_ab_mask[index]
max_ag_len = self.site_ag_mask.shape[-1]
max_ab_len = self.site_ab_mask.shape[-1]
site_label = self.site_label[key]
epitope = site_label['epitope']
ag_padding = [0 for _ in range(max_ag_len-len(epitope))]
epitope += ag_padding
paratope = site_label['paratope']
ab_padding = [0 for _ in range(max_ab_len-len(paratope))]
paratope+=ab_padding
input_data = {'ab_token_ft': ab_token_ft, 'ag_token_ft': ag_token_ft,
'ab_mask':ab_mask,'ag_mask':ag_mask,'ag_label':torch.tensor(epitope),'ab_label':torch.tensor(paratope)}
return input_data,key
class TestSiteDataset(Dataset):
def __init__(self, dataFolder):
"""
:param pair_data:
:param max_ab_length: HIV:271
:param max_ag_length: HIV:912
"""
self.map_index = json.load(open(f'{dataFolder}/map_index.json','r'))
self.seq_data = json.load(open(f'{dataFolder}/all_seq.json', 'r'))
self.site_ag_token = torch.load(f'{dataFolder}/site_ag_token.pt')
self.site_ab_token = torch.load(f'{dataFolder}/site_ab_token.pt')
self.site_ag_mask = torch.load(f'{dataFolder}/site_ag_mask.pt')
self.site_ab_mask = torch.load(f'{dataFolder}/site_ab_mask.pt')
def __len__(self):
return len(self.map_index)
def __getitem__(self, index):
key = self.map_index[str(index)]
ab_token_ft = self.site_ab_token[index]
ag_token_ft = self.site_ag_token[index]
ag_mask, ab_mask = self.site_ag_mask[index], self.site_ab_mask[index]
seq_dict = self.seq_data[key]
ag_seq = seq_dict['ag_seq']
ab_seq = seq_dict['ab_cdr']
ab_len = len(ab_seq)
ag_len = len(ag_seq)
input_data = {'ag_len':ag_len,'ab_len':ab_len,
'ab_token_ft': ab_token_ft, 'ag_token_ft': ag_token_ft,
'ab_mask':ab_mask,'ag_mask':ag_mask}
return input_data,key
class MuteDataset(Dataset):
def __init__(self, index,dataset,data_path=f'{os.getcwd()}/data'):
"""
:param pair_data:
:param max_ab_length: HIV:271 ag20:155
:param max_ag_length: HIV:912 ag20:460
"""
path = f'{data_path}/{dataset}/'
self.wt_ag_token_fts = torch.load(f'{path}/wt_ag_token_ft.pt')[index]
self.wt_ab_token_fts = torch.load(f'{path}/wt_ab_token_ft.pt')[index]
self.wt_ag_masks = torch.load(f'{path}/wt_ag_masks.pt')[index]
self.wt_ab_masks = torch.load(f'{path}/wt_ab_masks.pt')[index]
self.mu_ag_token_fts = torch.load(f'{path}/wt_ag_token_ft.pt')[index]
self.mu_ab_token_fts = torch.load(f'{path}/wt_ab_token_ft.pt')[index]
self.mu_ag_masks = torch.load(f'{path}/mu_ag_masks.pt')[index]
self.mu_ab_masks = torch.load(f'{path}/mu_ab_masks.pt')[index]
self.label = torch.load(f'{path}/label.pt')[index]
self.key_id = torch.load(f'{path}/key_id.pt')[index]
def __len__(self):
return self.label.shape[0]
def __getitem__(self, index):
label = self.label[index]
key_id = self.key_id[index]
wt_ag_token_ft = self.wt_ag_token_fts[index]
wt_ab_token_ft = self.wt_ab_token_fts[index]
wt_ag_mask = self.wt_ag_masks[index]
wt_ab_mask = self.wt_ab_masks[index]
mu_ag_token_ft = self.mu_ag_token_fts[index]
mu_ab_token_ft = self.mu_ab_token_fts[index]
mu_ag_mask = self.mu_ag_masks[index]
mu_ab_mask = self.mu_ab_masks[index]
wt_input_data = {'ag_token_ft': wt_ag_token_ft, 'ab_token_ft': wt_ab_token_ft,'ag_mask': wt_ag_mask,'ab_mask': wt_ab_mask}
mu_input_data = {'ag_token_ft': mu_ag_token_ft, 'ab_token_ft': mu_ab_token_ft,'ag_mask': mu_ag_mask,'ab_mask': mu_ab_mask}
return wt_input_data,mu_input_data,label,key_id