forked from gentelyang/cnn-text-classification-master
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_n.py
279 lines (240 loc) · 12.5 KB
/
train_n.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#! /usr/bin/env python
# encoding=utf-8
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_loader
from cnn_graph import TextCNN
from tensorflow.contrib import learn
from sklearn import cross_validation
import preprocessing
# 无tensorflow的summary和checkout
# ==================================================
# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 50, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 10, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 3.0, "L2 regularizaion lambda (default: 0.0)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 50, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 50, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
# w2v文件路径
tf.flags.DEFINE_string("w2v_path", "./w2v_model/vectors_50.bin", "w2v file")
tf.flags.DEFINE_string("file_dir","./data_process/jd","train/test dataSet")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
# Data Preparatopn
# ==================================================
# Load data
print("Loading data...")
files = ["reviews.neg","reviews.pos"]
# 加载所有的未切分的数据
x_text, y_labels,neg_examples,pos_examples = data_loader.\
load_data_and_labels(data_dir=FLAGS.file_dir,files=files,splitable=False)
# 获取消极数据的2/3,得到的评论的长度离散度更低
neg_accept_length = preprocessing.freq_factor(neg_examples,
percentage=0.8, drawable=False)
neg_accept_length = [item[0] for item in neg_accept_length]
neg_examples = data_loader.load_data_by_length(neg_examples,neg_accept_length)
# 获取积极数据的2/3,得到的评论的长度离散度更低
pos_accept_length = preprocessing.freq_factor(pos_examples,
percentage=0.8, drawable=False)
pos_accept_length = [item[0] for item in pos_accept_length]
pos_examples = data_loader.load_data_by_length(pos_examples,pos_accept_length)
x_text = neg_examples + pos_examples
neg_labels = [[1,0] for _ in neg_examples]
pos_labels = [[0,1] for _ in pos_examples]
y_labels = np.concatenate([neg_labels,pos_labels], axis=0)
print("Loading data finish")
# Build vocabulary
max_document_length = max([len(x.split(" ")) for x in x_text]) # 最长的句子的长度
print(max_document_length)
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
x = np.array(list(vocab_processor.fit_transform(x_text)))
# 加载提前训练的w2v数据集
word_vecs = data_loader.load_bin_vec(fname=FLAGS.w2v_path,
vocab=list(vocab_processor.vocabulary_._mapping),
ksize=FLAGS.embedding_dim)
# 加载嵌入层的table
W = data_loader.get_W(word_vecs=word_vecs,
vocab_ids_map=vocab_processor.vocabulary_._mapping,
k=FLAGS.embedding_dim,is_rand=False)
# 随机化数据
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y_labels)))
x_shuffled = x[shuffle_indices]
y_shuffled = y_labels[shuffle_indices]
out_path = os.path.abspath(os.path.join(os.path.curdir, "runs","parameters"))
parameters = "新全连接+jd数据+10\n" \
"embedding_dim: {},\n" \
"filter_sizes:{},\n" \
"num_filters:{},\n" \
"dropout_keep_prob:{},\n" \
"l2_reg_lambda:{},\n" \
"num_epochs:{},\n" \
"batch_size:{}".format(FLAGS.embedding_dim,FLAGS.filter_sizes,FLAGS.num_filters,
FLAGS.dropout_keep_prob,FLAGS.l2_reg_lambda,FLAGS.num_epochs,
FLAGS.batch_size)
open(out_path, 'w').write(parameters)
# Training
# ==================================================
def train(X_train, X_dev, x_test, y_train, y_dev, y_test):
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
cnn = TextCNN(
sequence_length=max_document_length,
num_classes=2,
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
embedding_table=W,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
# grad_summaries = []
# for g, v in grads_and_vars:
# if g is not None:
# grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
# sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
# grad_summaries.append(grad_hist_summary)
# grad_summaries.append(sparsity_summary)
# grad_summaries_merged = tf.merge_summary(grad_summaries)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.scalar_summary("loss", cnn.loss)
acc_summary = tf.scalar_summary("accuracy", cnn.accuracy)
# Train Summaries
# train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
# train_summary_dir = os.path.join(out_dir, "summaries", "train")
# train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph)
# Dev summaries
# dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
# dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
# dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
# checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
# checkpoint_prefix = os.path.join(checkpoint_dir, "model")
# if not os.path.exists(checkpoint_dir):
# os.makedirs(checkpoint_dir)
# saver = tf.train.Saver(tf.all_variables())
# Write vocabulary
# vocab_processor.save(os.path.join(out_dir, "vocab"))
# Initialize all variables
sess.run(tf.initialize_all_variables())
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
}
# _, step, summaries, loss, accuracy = sess.run(
# [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
# feed_dict)
_, step, loss, accuracy = sess.run(
[train_op, global_step, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
# train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0
}
# step, summaries, loss, accuracy = sess.run(
# [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
# feed_dict)
step, loss, accuracy = sess.run(
[global_step, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
# if writer:
# writer.add_summary(summaries, step)
# Generate batches
batches = data_loader.batch_iter(
list(zip(X_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print("\nEvaluation:")
# dev_step(X_dev, y_dev, writer=dev_summary_writer)
dev_step(X_dev, y_dev, writer=None)
print("")
# if current_step % FLAGS.checkpoint_every == 0:
# path = saver.save(sess, checkpoint_prefix, global_step=current_step)
# print("Saved model checkpoint to {}\n".format(path))
# Test loop
# Generate batches for one epoch
batches = data_loader.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
# Collect the predictions here
all_predictions = []
for x_test_batch in batches:
batch_predictions = sess.run(cnn.predictions, {cnn.input_x: x_test_batch, cnn.dropout_keep_prob: 1.0})
all_predictions = np.concatenate([all_predictions, batch_predictions])
correct_predictions = float(sum(
all_predictions == np.argmax(y_test,axis=1)))
print("Total number of test examples: {}".format(len(y_test)))
print("Accuracy: {:g}".format(correct_predictions / float(len(y_test))))
# open(os.path.join(out_dir,"test"),'a').write("Accuracy: {:g}".format(correct_predictions / float(len(y_test))))
out_path = os.path.abspath(os.path.join(os.path.curdir, "runs","test"))
open(out_path,'a').write("{:g},".format(correct_predictions / float(len(y_test))))
print("\n写入成功!\n")
# cross-validation
kf = cross_validation.KFold(len(x_shuffled), n_folds=3)
for train_index, test_index in kf:
X_train_total = x_shuffled[train_index]
y_train_total = y_shuffled[train_index]
x_test = x_shuffled[test_index]
y_test = y_shuffled[test_index]
# 分割训练集与验证集
X_train, X_dev, y_train, y_dev = cross_validation.train_test_split(
X_train_total, y_train_total, test_size=0.2, random_state=0)
print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
train(X_train,X_dev,x_test,y_train,y_dev,y_test)
# 分割训练集与测试训练集
# X_train_total, X_test, y_train_total, y_test = cross_validation.train_test_split(
# x_shuffled, y_shuffled, test_size=0.3, random_state=0)
#
# # 分割训练集与验证集
# X_train, X_dev, y_train, y_dev = cross_validation.train_test_split(
# X_train_total, y_train_total, test_size=0.2, random_state=0)
#
# # x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
# # y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
# train(X_train,X_dev,X_test,y_train,y_dev,y_test)