-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathRMCP_LMI_polytope.m
277 lines (227 loc) · 6.75 KB
/
RMCP_LMI_polytope.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
%Kothare M V, Balakrishnan V, Morai M. Robust constrained model predictive control using linear matrix %inequalities[C]// American Control Conference. IEEE, 1994:440-444 vol.1.
%example1
%By xuelang-wang
%polytope
close all
clear
clc
%参数设置
K = 0.787;%rad/(volts sec^2)
B = [0;0.1*K];%control matrix
C = [1 0];%measurement matrix
Q1 = C'*C;%量测权重
R = 0.00002;%控制权重
x0 = [0.05;0];%初始值
%%
%测试系统参数
alpha_exp = 9;
A_exp = [1 0.1;0 1-0.1*alpha_exp];
step = 40;%仿真步数
%Figure4(a) Using norminal MPC alpha_nor = 1 sec^(-1);
%normianl system
alpha_nor = 1;%0.1 sec^(-1) <= alpha <= 10 sec(-1)
A_nor = [1 0.1;0 1-0.1*alpha_nor];
%computer control law (unconstrained infinite horizon objective function)
%use--LMItoolbox
setlmis([]);
gama = lmivar(1,[1,0]);
Q = lmivar(1,[2,1]);
Y = lmivar(2,[1,2]);
%不等式1
lmiterm([-1,1,1,0],1);
lmiterm([-1,1,2,0],x0');
lmiterm([-1,2,2,Q],1,1);
%不等式2
lmiterm([-2,1,1,Q],1,1);
lmiterm([-2,1,2,Q],1,A_nor');
lmiterm([-2,1,2,-Y],1,B');
lmiterm([-2,1,3,Q],1,sqrt(Q1));
lmiterm([-2,1,4,-Y],1,sqrt(R));
lmiterm([-2,2,2,Q],1,1);
lmiterm([-2,3,3,gama],1,1);
lmiterm([-2,4,4,gama],1,1);
%不等式3
lmiterm([-3,1,1,Q],1,1);
norminal_sys = getlmis;
c = mat2dec(norminal_sys,1,zeros(size(Q,1),size(Q,2)),zeros(size(Y,1),size(Y,2)));
[copt,xopt] = mincx(norminal_sys,c);
F_nor = dec2mat(norminal_sys,xopt,Y) / dec2mat(norminal_sys,xopt,Q)
%matlab LQR——gain
[F_dlqr,S,~] = dlqr(A_nor,B,Q1,R);
F_dlqr = -F_dlqr
%mpt toolbox
nor_model = LTISystem('A',A_nor,'B',B,'C',C);
nor_model.x.penalty = QuadFunction(Q1);
nor_model.u.penalty = QuadFunction(R);
F_mpt = nor_model.LQRGain()
x_nor = zeros(2,step+1);
x_nor(:,1) = x0;
for i = 1:40
x_nor(:,i+1) = (A_exp+B*F_nor)*x_nor(:,i);
end
figure
plot(0:0.1:4,x_nor(1,:))
hold on;
plot(0:0.1:4,x_nor(2,:));
axis([0,4,-0.4 0.3]);
xlabel('time(sec)');
ylabel('$\theta (rad) and \dot{\theta}(rad/sec)$','interpreter','latex');
title('Using nominal MPC with \alpha(k)=1 sec^{-1}');
h1 = legend('$\theta$','$\dot{\theta}$');
set(h1,'interpreter','latex');
%--------------------------------------------------------------------------
%Robust system
alpha_k = [0.1,10];
A_k = cell(1,2);
for i = 1:2
A_k{1,i} = [1 0.1;0 1-0.1*alpha_k(1,i)];
end
%--------------------------------------------------------------------------
%fiugre 4(b) Using robust LMI-based MPC
x_Rot = zeros(2,step+1);
x_Rot(:,1) = x0;
setlmis([]);
gama = lmivar(1,[1,0]);
Q = lmivar(1,[2,1]);
Y = lmivar(2,[1,2]);
%不等式1
lmiterm([-1,1,1,0],1);
lmiterm([-1,1,2,0],x0');
lmiterm([-1,2,2,Q],1,1);
%不等式2
lmiterm([-2,1,1,Q],1,1);
%不等式3-4
for j = 1:2
lmiterm([-2-j,1,1,Q],1,1);
lmiterm([-2-j,1,2,Q],1,A_k{1,j}');
lmiterm([-2-j,1,2,-Y],1,B');
lmiterm([-2-j,1,3,Q],1,sqrt(Q1));
lmiterm([-2-j,1,4,-Y],1,sqrt(R));
lmiterm([-2-j,2,2,Q],1,1);
lmiterm([-2-j,3,3,gama],1,1);
lmiterm([-2-j,4,4,gama],1,1);
end
Robust_sys = getlmis;
c = mat2dec(Robust_sys,1,zeros(size(Q,1),size(Q,2)),zeros(size(Y,1),size(Y,2)));
[copt,xopt] = mincx(Robust_sys,c);
dec2mat(Robust_sys,xopt,gama)*inv(dec2mat(Robust_sys,xopt,Q))
F_Rot = dec2mat(Robust_sys,xopt,Y) / dec2mat(Robust_sys,xopt,Q);
for k = 1:step
x_Rot(:,k+1) = (A_exp + B*F_Rot)*x_Rot(:,k);
end
figure
plot(0:0.1:4,x_Rot(1,:))
hold on;
plot(0:0.1:4,x_Rot(2,:));
axis([0,4,-0.35 0.1]);
xlabel('time(sec)');
ylabel('$\theta (rad) and \dot{\theta}(rad/sec)$','interpreter','latex');
title('Using robust LMI-based MPC');
h2 = legend('$\theta$','$\dot{\theta}$');
set(h2,'interpreter','latex');
%%
% add control constraint
umax = 2;%Euclidean norm |u(k+i|k)| <= 2 i>=0;
step = 100;
x0 = [1;0];
x_Rot_Dynamic = zeros(2,step+1);
x_Rot_Dynamic(:,1) = x0;
u_Rot_Dynamic = zeros(1,step);
x_Rot_Static = zeros(2,step+1);
x_Rot_Static(:,1) = x0;
u_Rot_Static = zeros(1,step);
F_norm = zeros(1,step);
%computer static gain
setlmis([]);
gama = lmivar(1,[1,0]);
Q = lmivar(1,[2,1]);
Y = lmivar(2,[1,2]);
%不等式1
lmiterm([-1,1,1,0],1);
lmiterm([-1,1,2,0],x0');
lmiterm([-1,2,2,Q],1,1);
%不等式2
lmiterm([-2,1,1,Q],1,1);
%不等式3-4
for j = 1:2
lmiterm([-2-j,1,1,Q],1,1);
lmiterm([-2-j,1,2,Q],1,A_k{1,j}');
lmiterm([-2-j,1,2,-Y],1,B');
lmiterm([-2-j,1,3,Q],1,sqrt(Q1));
lmiterm([-2-j,1,4,-Y],1,sqrt(R));
lmiterm([-2-j,2,2,Q],1,1);
lmiterm([-2-j,3,3,gama],1,1);
lmiterm([-2-j,4,4,gama],1,1);
end
%add control constraint
lmiterm([-5,1,1,Q],1,1);
lmiterm([-5,1,2,-Y],1,1);
lmiterm([-5,2,2,0],umax*umax);
Robust_sys_Static = getlmis;
c = mat2dec(Robust_sys_Static,1,zeros(size(Q,1),size(Q,2)),zeros(size(Y,1),size(Y,2)));
[copt,xopt] = mincx(Robust_sys_Static,c);
F_Rot_Static = dec2mat(Robust_sys_Static,xopt,Y) / dec2mat(Robust_sys_Static,xopt,Q);
for k = 1:step
alpha_Dynamic = unifrnd(0.1,10);
A_Dynamic = [1 0.1;0 1-0.1*alpha_Dynamic];
setlmis([]);
gama = lmivar(1,[1,0]);
Q = lmivar(1,[2,1]);
Y = lmivar(2,[1,2]);
%不等式1
lmiterm([-1,1,1,0],1);
lmiterm([-1,1,2,0],x_Rot_Dynamic(:,k)');
lmiterm([-1,2,2,Q],1,1);
%不等式2
lmiterm([-2,1,1,Q],1,1);
%不等式3-4
for j = 1:2
lmiterm([-2-j,1,1,Q],1,1);
lmiterm([-2-j,1,2,Q],1,A_k{1,j}');
lmiterm([-2-j,1,2,-Y],1,B');
lmiterm([-2-j,1,3,Q],1,sqrt(Q1));
lmiterm([-2-j,1,4,-Y],1,sqrt(R));
lmiterm([-2-j,2,2,Q],1,1);
lmiterm([-2-j,3,3,gama],1,1);
lmiterm([-2-j,4,4,gama],1,1);
end
%add control constraint
lmiterm([-5,1,1,Q],1,1);
lmiterm([-5,1,2,-Y],1,1);
lmiterm([-5,2,2,0],umax*umax);
Robust_sys_Dynamic = getlmis;
c = mat2dec(Robust_sys_Dynamic,1,zeros(size(Q,1),size(Q,2)),zeros(size(Y,1),size(Y,2)));
[copt,xopt] = mincx(Robust_sys_Dynamic,c);
F_Rot_Dynamic = dec2mat(Robust_sys_Dynamic,xopt,Y) / dec2mat(Robust_sys_Dynamic,xopt,Q);
F_norm(1,k) = norm(F_Rot_Dynamic,2);
u_Rot_Dynamic(:,k) = F_Rot_Dynamic*x_Rot_Dynamic(:,k);
x_Rot_Dynamic(:,k+1) = (A_Dynamic + B*F_Rot_Dynamic)*x_Rot_Dynamic(:,k);
u_Rot_Static(:,k) = F_Rot_Static*x_Rot_Static(:,k);
x_Rot_Static(:,k+1) = (A_Dynamic + B*F_Rot_Static)*x_Rot_Static(:,k);
end
figure
plot(0:0.1:step/10,x_Rot_Dynamic(1,:))
hold on
plot(0:0.1:step/10,x_Rot_Static(1,:),'--')
axis([0,10,-0.2 1]);
title('Angular position \theta (rad)');
xlabel('time(sec)');
ylabel('\theta(rad)');
legend('Dynamic','Static');
figure
plot(0:0.1:(step-1)/10,u_Rot_Dynamic(1,:));
hold on
plot(0:0.1:(step-1)/10,u_Rot_Static(1,:),'--');
axis([0,10,-2,0.5]);
title('Control signal u(volts)');
xlabel('time(sec)');
ylabel('u(volts)');
legend('Dynamic','Static');
figure
plot(0:0.1:(step-1)/10,F_norm);
hold on;
plot(0:0.1:(step-1)/10,norm(F_Rot_Static,2)*ones(100,1),'--');
% axis([0,10,0,45]);
xlabel('time(sec)');
ylabel('Norm of F');
legend('Dynamic','Static');