forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
56 lines (47 loc) · 2.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddlenlp as ppnlp
class QuestionMatching(nn.Layer):
def __init__(self, pretrained_model, dropout=None, rdrop_coef=0.0):
super().__init__()
self.ptm = pretrained_model
self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)
# num_labels = 2 (similar or dissimilar)
self.classifier = nn.Linear(self.ptm.config["hidden_size"], 2)
self.rdrop_coef = rdrop_coef
self.rdrop_loss = ppnlp.losses.RDropLoss()
def forward(self,
input_ids,
token_type_ids=None,
position_ids=None,
attention_mask=None,
do_evaluate=False):
_, cls_embedding1 = self.ptm(input_ids, token_type_ids, position_ids,
attention_mask)
cls_embedding1 = self.dropout(cls_embedding1)
logits1 = self.classifier(cls_embedding1)
# For more information about R-drop please refer to this paper: https://arxiv.org/abs/2106.14448
# Original implementation please refer to this code: https://github.com/dropreg/R-Drop
if self.rdrop_coef > 0 and not do_evaluate:
_, cls_embedding2 = self.ptm(input_ids, token_type_ids,
position_ids, attention_mask)
cls_embedding2 = self.dropout(cls_embedding2)
logits2 = self.classifier(cls_embedding2)
kl_loss = self.rdrop_loss(logits1, logits2)
else:
kl_loss = 0.0
return logits1, kl_loss